ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Shabunin A. V., Nikolaev S. M., Astakhov V. V. Two-parametric bifurcational analysis of regimes of complete synchronization in ensemble of three discrete-time oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 24-39. DOI: 10.18500/0869-6632-2005-13-5-24-39

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 177)
Article type: 

Two-parametric bifurcational analysis of regimes of complete synchronization in ensemble of three discrete-time oscillators

Shabunin Aleksej Vladimirovich, Saratov State University
Nikolaev Sergej Mihajlovich, Saratov State University
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov

We invetsigate mechanisms of appearance and disappearance of regimes of complete synchronization of chaos in a ring of three logistic maps with symmetric diffusive coupling. Two-parametric bifurcational analysis is carried out and typical oscillating regimes and transitions between them are considered.

Key words: 
  1. Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator system. Progress of Theoretical Physics. 1983;69(1):32–47. DOI: 10.1143/PTP.69.32.
  2. Pikovsky AS. On the interaction of strange attractors. Preprint of the Institute of Applied Physics of the Academy of Sciences of the USSR. Gorky; 1983. 20 p. (in Russian).
  3. Kuznetsov SP. Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophys. Quantum Electron. 1985;28(8):681–695. DOI: 10.1007/BF01035195.
  4. Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 1986;29(9):795–803. DOI: 10.1007/BF01034476.
  5. Hasler M, Maistrenko Y, Popovych O. Simple example of partial synchronization of chaotic systems. Phys. Rev E. 1998;58(5):6843–6846. DOI: 10.1103/PhysRevE.58.6843.
  6. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51(2):980–994. DOI: 10.1103/physreve.51.980.
  7. Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E. 1996;53(5):4528–4535. DOI: 10.1103/PhysRevE.53.4528.
  8. Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Forced and mutual synchronization of chaos. Sov. J. Commun. Technol. Electron. 1991;36(2):338–351 (in Russian).
  9. Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Synchronization of chaos. Int. J. Bifurcat. Chaos. 1992;2(3):633–644. DOI: 10.1142/S0218127492000756.
  10. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996;76(11):1804–1807. DOI: 10.1103/physrevlett.76.1804.
  11. Belykh VN, Mosekilde E. One-dimensional map lattices: synchronization, bifurcations, and chaotic structures. Phys. Rev. E. 1996;54(4):3196–3203. DOI: 10.1103/PhysRevE.54.3196.
  12. Brown R, Rulkov NF. Synchronization of chaotic systems: transverse stability of trajectories in invariant manifolds. Chaos. 1997;7(3):395–413. DOI: 10.1063/1.166213.
  13. Andreyev YV, Dmitriev AS. Conditions for global synchronization in lattices of chaotic elements with local connections. Int. J. Bifurcat. Chaos. 1999;9(11):2165–2172. DOI: 10.1142/S0218127499001589.
  14. Astakhov V, Shabunin A, Kapitaniak T, Anishchenko V. Loss of chaos synchronization through the sequence of bifurcations of saddle periodic orbits. Phys. Rev. Lett. 1997;79(6):1014–1017. DOI: 10.1103/PhysRevLett.79.1014.
  15. Astakhov V, Hasler M, Kapitaniak T, Shabunin A, Anishchenko V. Effect of parameter mismatch on the mechanism of chaos synchronization loss in coupled systems. Phys. Rev. E. 1998;58(5):5620–5628. DOI: 10.1103/PhysRevE.58.5620.
  16. Maistrenko Y, Maistrenko V, Popovych O, Mosekilde E. Desynchronization of chaos in coupled logistic maps. Phys. Rev. E. 1999;60(3):2817–2830. DOI: 10.1103/PhysRevE.60.2817.
  17. Astakhov V, Shabunin A, Klimshin A, Anishchenko V. In-phase and antiphase complete chaotic synchronization in symmetrically coupled discrete maps. Discrete Dynamics in Nature and Society. 2000;7(4):215–229. DOI: 10.1155/S1026022602000250.
  18. Astakhov V, Shabunin A, Uhm W, Kim S. Multistability formation and synchronization loss in coupled Henon maps: Two sides of the single bifurcational mechanism. Phys. Rev. E. 2001;63(5):056212. DOI: 10.1103/PhysRevE.63.056212.
  19. Ashwin P, Buescu J, Stewart I. Bubbling of attractors and synchronization of chaotic oscillators. Phys. Lett. A. 1994;193(2):126–139. DOI: 10.1016/0375-9601(94)90947-4.
  20. Ashwin P, Buescu J, Stewart I. From attractor to chaotic saddle: a tale of transverse instability. Nonlinearity. 1996;9(3):703–738. DOI: 10.1088/0951-7715/9/3/006.
  21. Venkataramani SC, Hunt BR, Ott E. Bubbling transition. Phys. Rev. E. 1996;54(2):1346–1360. DOI: 10.1103/PhysRevE.54.1346.
  22. Taborov AV, Maistrenko YL, Mosekilde E. Partial synchronization in a system of coupled logistic maps. Int. J. Bifurcat. Chaos. 2000;10(5):1051–1066. DOI: 10.1142/S0218127400000748.
Short text (in English):
(downloads: 88)