ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Manenkov A. B. Waveguide with thin nonlinear walls. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 6, pp. 3-16. DOI: 10.18500/0869-6632-2009-17-6-3-16

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 222)
Language: 
Russian
Article type: 
Article
UDC: 
621.372; 537.86; 537.87

Waveguide with thin nonlinear walls

Autors: 
Manenkov Aleksandr Bencionovich, P.L. Kapitza Institute for Physical Problems of Russian Academy of Sciences
Abstract: 

Characteristics of modes of the planar waveguide with thin walls, which are made from nonlinear media, are studied. The effect of the conversion of a mode from one set to another is considered. This effect may occur if parameters of the waveguide or transmitted power are varied. It is shown that the effect of the guided or leaky modes «disappearance» can arise when the field amplitudes increase, i.e., high powers launched into such a structure can suppress the modal propagation. 

Reference: 
  1. Akhmediev NN, Ankevich A. Solitons. Moscow: Fizmatlit; 2003. 304 p. (in Russian).
  2. Kivshar YS, Agrawal GP. Optical Solitons: From Fibers to Photonic Crystals. Academic Press; 2003. 540 p.
  3. Ryasnyansky AI, Palpant B. et al. Nonlinear optical properties of copper nano-particles synthesized in indium tin oxide matrix by ion implantation. J. Opt. Soc. Am. B. 2006;23(7):1348–1353. DOI:10.1364/JOSAB.23.001348.
  4. Sotsky AB, Khomchenko AV, Sotskaya LI. Measurement of parameters of cubic-nonlinear waveguides. Technical Physics Letters. 1994;20(6):49–54.
  5. Ogusu K. Analysis of non-linear multilayer waveguides with Kerr-like permittivities. Opt. Quantum Electron. 1989;21(2):109–116. DOI: 10.1007/BF02190075.
  6. Melekhin VN, Manenkov AB. Dielectric pipes as waveguides with low losses. Technical Physics. 1968;38(12):2113–2115.
  7. Manenkov AB. Attenuation of fast waves in dielectric pipes. Radio Engineering and Electronic Physics. 1977;22(10):2043—2051 (in Russian).
  8. Li J, Chiang KS. Disappearance of modes in planar Bragg waveguides. Opt Lett. 2007;32(16):2369–2371. DOI: 10.1364/ol.32.002369.
  9. Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press; 2008. (2-nd edition).
  10. Manenkov AB. The leaky modes of multilayered waveguide with nonlinear dielectrics. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(4):20–32. DOI: 10.18500/0869-6632-2008-16-4-20-32.
  11. Manenkov AB. Excitation of fast waves in an open waveguide with a dielectric wall. Radiophysics and Quantum Electronics. 1975;18(7):1025–1031.
  12. Molotkov IA, Manenkov AB. On nonlinear tunnel effects. J. Commun. Technol. Electron. 2007;52(7):743–750. DOI: 10.1134/S1064226907070054.
  13. Landau LD, Lifshits EM. Electrodynamics of Continuous Media. Butterworth-Heinemann; 1984. 460 p.
  14. Manenkov AB. The excitation of open homogeneous waveguides. Radiophys. Quantum Electron. 1970;13(5):578–586. DOI: 10.1007/BF01030694.
  15. Nikolsky VV. Variational Methods for Internal Problems of Electrodynamics. Moscow: Nauka; 1967. 460 p. (in Russian).
  16. Vainshtein LA. Diffraction Theory. Microwave Electronics. Moscow: Radio I Svyaz; 1995. 600 p. (in Russian).
  17. Katselenbaum BZ. Theory of Irregular Waveguides with Slowly Varying Parameters. Moscow: AS USSR; 1961. 216 p. (in Russian).
  18. Manenkov AB. Orthogonality Conditions for Leaky Modes. Radiophys. Quantum Electron. 2005;48(5):348–360. DOI: 10.1007/s11141-005-0076-8.
  19. Weinstein LA. Diffraction Theory and Factorization Method. Moscow: Radio I Svyaz; 1966. 431 p. (in Russian).
  20. Glushchenko A.G. Theory of microwave waveguide structures with nonlinear films. Radiophysics and Quantum Electronics. 1988;31(9):1098–1103.
  21. Vainstein LA. Electromagnetic Waves. Moscow: Radio I Svyaz; 1982.440 p. (in Russian).
  22. Newton R. Scatteting theory of waves and particles. Moscow: Mir; 1969. 607 p. (In Russian).
  23. Kahaner D, Moler C, Nash S. Numerical Methods and Software/Disk Induced. Prentice Hall; 1988. 495 p.
Received: 
11.03.2009
Accepted: 
11.04.2009
Published: 
31.12.2009
Short text (in English):
(downloads: 66)