ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

Error message

  • Notice: Undefined variable: keywords in mybiblio_list_block_content() (line 245 of /www/izvestiya2019/public/sites/all/modules/custom/biblio_list/biblio_list.module).
  • Notice: Undefined variable: BibTeX_keywords in mybiblio_list_block_content() (line 304 of /www/izvestiya2019/public/sites/all/modules/custom/biblio_list/biblio_list.module).

Cite this article as:

Anisimov A. A., Pavlova O. N., Tupicyn A. N., Pavlov A. N. Wavelet-analysis of chirps. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 5, pp. 3-11. DOI:


Wavelet-analysis of chirps


The paper discusses the possibilities of studying of rhythmic processes with linearly changed frequencies («chirps») based on the wavelet-analysis. Limitations of the continuous wavelet-transformation in the analysis of superpositions of signals with linear frequency modulation are formulated. E?ects of the interference and the modulation of rhythmic processes are considered.

Key words: 

1. Gabor D. Theory of communication // J. Inst. Electr. Eng. London. 1946. Vol. 93. P. 429. 2. Peng C.-K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series // Chaos. 1995. Vol. 5. P. 82. 3. Peng C.-K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L. Mosaic organization of DNA nucleotides // Phys. Rev. E. 1994. Vol. 49. P. 1685. 4. Grossmann A., Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape // S.I.A.M. J. Math. Anal. 1984. Vol. 15. P. 723. 5. Meyer Y. Wavelets: Algorithms and Applications. Philadelphie: S.I.A.M., 1993. 6. Малла С. Вэйвлеты в обработке сигналов. М.: Мир, 2005. 7. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ в приложениях к задачам нелинейной динамики. Саратов: ГосУНЦ «Колледж», 2002. 8. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1996. T. 166. С. 1145. 9. Дремин И.М., Иванов О.В., Нечитайло В.А. Вейвлеты и их применение // Успехи физических наук. 2001. T. 171. С. 465. 10. Muzy J.F., Bacry E., Arneodo A. The multifractal formalism revisited with wavelets // Int. J. Bifurcation Chaos. 1994. Vol. 4. P. 245. 11. Павлов А.Н., Анищенко В.С. Мультифрактальный анализ сложных сигналов // Успехи физических наук. 2007. Т. 177. С. 859. 12. Dremin I.M. Cumulant and factorial moments in perturbative gluodynamics // Phys. Lett. B. 1993. Vol. 313. P. 209. 13. Sosnovtseva O.V., Pavlov A.N., Brazhe N.A., Brazhe A.R., Erokhova L.A., Maksimov G.V., Mosekilde E. Interference microscopy under double-wavelet analysis: A new tool to studying cell dynamics // Physical Review Letters. 2005. Vol. 94. P. 218103. 14. Marsh D.J., Sosnovtseva O.V., Pavlov A.N., Yip K.-P., Holstein-Rathlou N.-H. Frequency encoding in renal blood flow regulation // American Journal of Physiology. 2005. Vol. 288. P. R1160. 15. Pavlov A.N., Makarov V.A., Mosekilde E., Sosnovtseva O.V. Application of wavelet-based tools to study the dynamics of biological processes // Briefings in Bioinformatics. 2006. Vol. 7(4). P. 375. 16. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H., Marsh D.J. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation // Phys. Rev. E. 2004. Vol. 70. P. 031915. 17. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H., Marsh D.J. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics // Physiological Measurement. 2005. Vol. 26. P. 351. 18. Wand H., Siu K., Ju K., Chon K.H. A high resolution approach to estimating time-frequency spectra and their amplitudes // Annals of Biomedical Engineering. 2006. Vol. 34. P. 326.

Short text (in English):
(downloads: 7)
Full text:
(downloads: 11)