ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Sonechkin D. M., Dacenko N. M. Wavelet transform of time series and atmosphere dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 1993, vol. 1, iss. 1, pp. 9-14.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 141)
Language: 
Russian

Wavelet transform of time series and atmosphere dynamics

Autors: 
Sonechkin Dmitrij Mihajlovich, Hydrometeorological Research Centre of Russian Federation
Dacenko N. M., Hydrometeorological Research Centre of Russian Federation
Abstract: 

Wavelet transform is described as a new tool for investigation of data generated by the chaotic dynamic systems. Its usage is illustrated by the analysis of the temporal oscillation of the atmosphere zonal circulation index.

Key words: 
Reference: 

Wavelets / Eds. J.M. Combes, A. Grossmann, Ph. Tchamitchian. Springer. 1989. Argoul F. et al. Wavelet transform of fractal aggregate // Phys. Lett. A. 1989. Vol. 135, N 6,7. P.327. GrossmannA. Wavelet transforms and edge detection // Stochastic Processes in Physics and Engineering. Reidel, 1988. P. 149. Argoul F. et al. Wavelet analysis of turbulence reveals the maltifractal nature of the Richardson cascade // Lett. to Nature. 1989. Vol. 338. P.51. Labor E., Turcsanyi B. On the reversible and irreversible representations of motions in Rn to R2 // Phys. D. 1985. Vol.16. P.124. Мирабель А.Л., Монин А.С. Двумернан турбулентность // УФН. 1979. Т.2, вып.3. С.47. NelkinM. What do we know about self-similarity in fluid turbulence? // J. Stat. Phys. 1989. Vol.54, N 1,2. P.1. Mandelbrot B.B. The fractal geometry of nature. Freeman, 1982.

Short text (in English):
(downloads: 92)