ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kovaleva N. S., Matrosov V. V., Mishchenko M. A. Working memory capacity: the role of parameters of spiking neural network model. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 1, pp. 86-102. DOI: 10.18500/0869-6632-003022, EDN: AKKIBM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Article type: 
001.57; 004.81; 51.76

Working memory capacity: the role of parameters of spiking neural network model

Kovaleva Natalya Sergeevna, Lobachevsky State University of Nizhny Novgorod
Matrosov Valerij Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Mishchenko Mikhail Andreevich, Lobachevsky State University of Nizhny Novgorod

Purpose of this work is to study a computational model of working memory formation based on spiking neural network with plastic connections and to study the capacity of working memory depending on the time scales of synaptic facilitation and depression and the background excitation of the network.

Methods. The model imitates working memory formation within synaptic theory: memorized items are stored in form of short-term potentiated connections in selective population but not in form of persistent activity. Integrate-And-Fire neuron model in excitable mode are used as network elements. Connections between excitatory neurons demonstrates the effect of short-term plasticity.

Results. It is shown that the working memory capacity increases as calcium recovery time parameter grow up or the capacity increases with neurotransmitter recovery time parameter becomes lower. Working memory capacity is found to decrease to zero with decrease of the background excitation as a result of lower values of both the mean and the variance of the external noise.

Conclusion. Working memory capacity was studied as a function of time scales of synaptic facilitation and depression and background excitation of the network. Estimated working memory capacity is shown to be possibly larger than classical experimental estimations of four items. But capacity strongly depends on intrinsic parameters of neural networks.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 0729-2020-0040) and by RFBR (project No. 20-32-90157)
  1. Baddeley A. Working memory. Science. 1992;255(5044):556–559. DOI: 10.1126/science.1736359.
  2. Baddeley A. Working memory: looking back and looking forward. Nat. Rev. Neurosci. 2003;4(10): 829–839. DOI: 10.1038/nrn1201.
  3. Miller EK, Erickson CA, Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 1996;16(16):5154–5167. DOI: 10.1523/JNEUROSCI.16-16- 05154.1996.
  4. Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science. 1971;173(3997): 652–654. DOI: 10.1126/science.173.3997.652.
  5. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 1989;61(2):331–349. DOI: 10.1152/jn.1989.61.2.331.
  6. Spaak E, Watanabe K, Funahashi S, Stokes MG. Stable and dynamic coding for working memory in primate prefrontal cortex. J. Neurosci. 2017;37(27):6503–6516. DOI: 10.1523/JNEUROSCI.3364- 16.2017.
  7. Barak O, Tsodyks M. Working models of working memory. Curr. Opin. Neurobiol. 2014;25:20–24. DOI: 10.1016/j.conb.2013.10.008.
  8. Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14(3):477–485. DOI: 10.1016/ 0896-6273(95)90304-6.
  9. Bray N. Working memory: Persistence is key. Nat. Rev. Neurosci. 2017;18(7):385. DOI: 10.1038/ nrn.2017.70.
  10. Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K. Maintenance of persistent activity in a frontal thalamocortical loop. Nature. 2017;545(7653):181–186. DOI: 10.1038/ nature22324.
  11. Baddeley A. Working memory. Curr. Biol. 2010;20(4):R136–R140. DOI: 10.1016/j.cub.2009.12.014.
  12. Diamond A. Executive functions. Annu. Rev. Psychol. 2013;64:135–168. DOI: 10.1146/annurevpsych-113011-143750.
  13. Pasternak T, Greenlee MW. Working memory in primate sensory systems. Nat. Rev. Neurosci. 2005;6(2):97–107. DOI: 10.1038/nrn1603.
  14. Afraimovich V, Gong X, Rabinovich M. Sequential memory: Binding dynamics. Chaos. 2015; 25(10):103118. DOI: 10.1063/1.4932563.
  15. Kilpatrick ZP. Synaptic mechanisms of interference in working memory. Sci. Rep. 2018;8(1):7879. DOI: 10.1038/s41598-018-25958-9.
  16. Nachstedt T. The Processing and Storage of Information in Neuronal Memory Systems Across Time Scales. Dissertation for the award of the degree «Doctor rerum naturalium». Gottingen: Georg-August-Universitat Gottingen; 2017. 149 p.
  17. Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 2003;7(9):415–423. DOI: 10.1016/S1364-6613(03)00197-9.
  18. Riley MR, Constantinidis C. Role of prefrontal persistent activity in working memory. Front. Syst. Neurosci. 2016;9:181. DOI: 10.3389/fnsys.2015.00181.
  19. Bolkan SS, Stujenske JM, Parnaudeau S, Spellman TJ, Rauffenbart C, Abbas AI, Harris AZ, Gordon JA, Kellendonk C. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat. Neurosci. 2017;20(7):987–996. DOI: 10.1038/nn.4568.
  20. Constantinidis C, Funahashi S, Lee D, Murray JD, Qi XL, Wang M, Arnsten AFT. Persistent spiking activity underlies working memory. J. Neurosci. 2018;38(32):7020–7028. DOI: 10.1523/ JNEUROSCI.2486-17.2018.
  21. Rabinovich M, Huerta R, Laurent G. Transient dynamics for neural processing. Science. 2008; 321(5885):48–50. DOI: 10.1126/science.1155564.
  22. Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319(5869): 1543–1546. DOI: 10.1126/science.1150769.
  23. Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK. Gamma and beta bursts underlie working memory. Neuron. 2016;90(1):152–164. DOI: 10.1016/j.neuron.2016.02.028.
  24. Lisman JE, Idiart MAP. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science. 1995;267(5203):1512–1515. DOI: 10.1126/science.7878473.
  25. Rolls ET, Dempere-Marco L, Deco G. Holding multiple items in short term memory: A neural mechanism. PLOS ONE. 2013;8(4):e61078. DOI: 10.1371/journal.pone.0061078.
  26. Dempere-Marco L, Melcher DP, Deco G. Effective visual working memory capacity: An emergent effect from the neural dynamics in an attractor network. PLOS ONE. 2012;7(8):e42719. DOI: 10.1371/journal.pone.0042719.
  27. Miller EK, Lundqvist M, Bastos AM. Working memory 2.0. Neuron. 2018;100(2):463–475. DOI: 10.1016/j.neuron.2018.09.023.
  28. Lundqvist M, Herman P, Miller EK. Working memory: Delay activity, yes! Persistent activity? Maybe not. J. Neurosci. 2018;38(32):7013–7019. DOI: 10.1523/JNEUROSCI.2485-17.2018.
  29. Jun JK, Miller P, Hernandez A, Zainos A, Lemus L, Brody CD, Romo R. Heterogenous population coding of a short-term memory and decision task. J. Neurosci. 2010;30(3):916–929. DOI: 10.1523/JNEUROSCI.2062-09.2010.
  30. Hussar CR, Pasternak T. Memory-guided sensory comparisons in the prefrontal cortex: Contribution of putative pyramidal cells and interneurons. J. Neurosci. 2012;32(8):2747–2761. DOI: 10.1523/ JNEUROSCI.5135-11.2012.
  31. Rabinovich MI, Simmons AN, Varona P. Dynamical bridge between brain and mind. Trends Cogn. Sci. 2015;19(8):453–461. DOI: 10.1016/j.tics.2015.06.005.
  32. Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat. Neurosci. 2006;9(4):534–542. DOI: 10.1038/nn1670.
  33. Gordleeva SY, Tsybina YA, Krivonosov MI, Ivanchenko MV, Zaikin AA, Kazantsev VB, Gorban AN. Modeling working memory in a spiking neuron network accompanied by astrocytes. Front. Cell. Neurosci. 2021;15:631485. DOI: 10.3389/fncel.2021.631485.
  34. Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 1956;63(2):81–97. DOI: 10.1037/h0043158.
  35. Koyluoglu OO, Pertzov Y, Manohar S, Husain M, Fiete IR. Fundamental bound on the persistence and capacity of short-term memory stored as graded persistent activity. eLife. 2017;6:e22225. DOI: 10.7554/eLife.22225.
  36. Сowan N, Elliott EM, Saults JS, Morey CC, Mattox S, Hismjatullina A, Conway ARA. On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cogn. Psychol. 2005;51(1):42–100. DOI: 10.1016/j.cogpsych.2004.12.001.
  37. Conway ARA, Cowan N, Bunting MF. The cocktail party phenomenon revisited: The importance of working memory capacity. Psychon. Bull. Rev. 2001;8(2):331–335. DOI: 10.3758/BF03196169.
  38. Oberauer K. Access to information in working memory: Exploring the focus of attention. J. Exp. Psychol. Learn. Mem. Cogn. 2002;28(3):411–421. DOI: 10.1037/0278-7393.28.3.411.
  39. Cowan N. The magical mystery four: How is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 2010;19(1):51–57. DOI: 10.1177/0963721409359277.
  40. Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 2001;24(1):87–114. DOI: 10.1017/S0140525X01003922.
  41. Frost A, Moussaoui S, Kaur J, Aziz S, Fukuda K, Niemeier M. Is the n-back task a measure of unstructured working memory capacity? Towards understanding its connection to other working memory tasks. Acta Psychol. 2021;219:103398. DOI: 10.1016/j.actpsy.2021.103398.
  42. Mi Y, Katkov M, Tsodyks M. Synaptic correlates of working memory capacity. Neuron. 2017; 93(2):323–330. DOI: 10.1016/j.neuron.2016.12.004.
  43. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A. 1982;79(8):2554–2558. DOI: 10.1073/pnas.79.8.2554.
  44. Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLOS Biol. 2005;3(3):e68. DOI: 10.1371/journal.pbio. 0030068.
  45. Dmitrichev AS, Kasatkin DV, Klinshov VV, Kirillov SY, Maslennikov OV, Shchapin DS, Nekorkin VI. Nonlinear dynamical models of neurons: Review. Izvestiya VUZ. Applied Nonlinear Dynamics. 2018;26(4):5–58. DOI: 10.18500/0869-6632-2018-26-4-5-58.
  46. Tsodyks MV, Markram H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. U. S. A. 1997;94(2):719–723. DOI: 10.1073/pnas.94.2.719.
  47. Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature. 1997;390(6657):279–281. DOI: 10.1038/36846.
  48. Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH, Manoach DS, Belger A, Diaz M, Wible CG, Ford JM, Mathalon DH, Gollub R, Lauriello J, O’Leary D, van Erp TGM, Toga AW, Preda A, Lim KO, FBIRN. Working memory and DLPFC inefficiency in schizophrenia: The FBIRN study. Schizophr. Bull. 2009;35(1):19–31. DOI: 10.1093/schbul/sbn162.
  49. Godwin D, Ji A, Kandala S, Mamah D. Functional connectivity of cognitive brain networks in schizophrenia during a working memory task. Front. Psychiatry. 2017;8:294. 10.3389/fpsyt. 2017.00294.
Available online: