ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


динамические режимы

Nonlinear dynamics of a ring of three phase systems

Nonlinear dynamics of the ensemble consisting of three phase­locked generators, which are coupled in a ring, is discovered. By force of computational modeling, which is based on the theory of oscillations, the regimes of the generators collective behavior is examined; the districts of synchronous and quasi­synchronous regimes are distinguished in the parameter space; the restructuring of the dynamics behavior on the boards of the distinguished districts is analyzed.

Dynamic modes of two­age population model

In this paper we research a mathematical model of dynamics for the population number. We considered the population of the two­age classes by the beginning of the next season: the younger, one including not reproductive individuals, and the senior class, consisting of the individuals participating in reproduction. The model parameters (birth rate and survival rates) represent the exponential functions of the both age groups numbers. According to this supposition the density­dependent factors restrict the development of population.

Nonlinear dynamics of a ring of two coupled phase locked loops

Nonlinear dynamics of the ensemble consisting of two phase­locked generators, which are coupled in a ring with feedback, is discovered. The conditions of stability of the synchronous regimes and appropriatenesses of excitation and progress of the non­synchronous regimes are examined within the bounds of the dynamic model with one and a half degrees of freedom. The extensive image of the dynamic regimes and bifurcating transitions, creating resources for the formation in the system of various types of oscillations, is discovered.