Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Матросов В. В., Шмелев А. В. Нелинейная динамика ансамбля из двух фазоуправляемых генераторов с кольцевым типом объединения // Известия вузов. ПНД. 2010. Т. 18, вып. 4. С. 67-80. DOI: 10.18500/0869-6632-2010-18-4-67-80

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 81)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
621.391.01

Нелинейная динамика ансамбля из двух фазоуправляемых генераторов с кольцевым типом объединения

Авторы: 
Матросов Валерий Владимирович, Нижегородский государственный университет имени Н.И.Лобачевского (ННГУ)
Шмелев Алексей Вячеславович, Нижегородский государственный университет имени Н.И.Лобачевского (ННГУ)
Аннотация: 

Исследуется нелинейная динамика ансамбля, состоящего из двух фазоуправляемых генераторов, объединенных в кольцо с дополнительными связями по цепям управления. В рамках динамической модели с полутора степенями свободы исследованы условия устойчивости синхронных режимов и закономерности возбуждения и развития несинхронных режимов. Обнаружена богатая картина динамических режимов и бифуркационных переходов, создающая возможности для формирования в системе разнообразных видов колебаний. Рассмотрена возможность управления динамическими режимами генераторов ансамбля с помощью параметров парциальных подсистем и параметров связей.  

Список источников: 
  1. Барбашин Е.А., Табуева В.А. Динамические системы с цилиндрическим фазовым пространством. М.: Наука, 1969.
  2. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Физматгиз, 1959.
  3. Системы фазовой синхронизации / Под ред. В.В. Шахгильдяна, Л.Н. Белюстиной. М.: Радио и связь, 1982.
  4. Неймарк Ю.И. Математические модели в естествознании и технике. Н. Новгород: Изд-во Нижегородского университета, 2004.
  5. Пиковский А., Роземблюм М., Куртс Ю. Синхронизация: Фундаментальное нелинейное явление. М.: Техносфера, 2003.
  6. Афраймович В.С., Некоркин В.И., Осипов Г.В., Шалфеев В.Д. Устойчивость, структуры и хаос в нелинейных сетях синхронизации. Горький: Изд-во ИПФАН, 1989.
  7. Матросов В.В., Корзинова М.В. Коллективная динамика каскадного соединения фазовых систем // Изв.вузов. Прикладная нелинейная динамика. 1994. Т. 2, No 2. С. 10.
  8. Матросов В.В. Динамика двух параллельно связанных фазоуправляемых генераторов с малоинерционными цепями управления // Изв.вузов. Прикладная нелинейная динамика. 2006. Т. 14, No 1. С. 25.
  9. Пономаренко В.П., Матросов В.В. Динамические режимы и бифуркации при взаимодействии двух систем синхронизации через перекрестные связи // Изв. вузов. Прикладная нелинейная динамика. 2000. Т. 8, No 4. С. 52.
  10. Матросов В.В. Динамика двух фазоуправляемых генераторов с малоинерционными цепями управления, связанных через нелинейный элемент // Изв. вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 3. С. 15.
  11. Матросов В.В., Шалфеев В.Д. Динамический хаос в фазовых системах. Н. Новгород: Изд-во Нижегородского университета, 2007.
  12. Линдсей В. Системы синхронизации в связи и управлении / Пер. с англ. Под ред. Ю.Н. Бакаева и М.В. Капранова. М.: Сов. радио, 1978.
  13. Шахгильдян В.В., Ляховкин А.А. Системы фазовой автоподстройки частоты. М.: Связь, 1972.
  14. Капранов М.В. Элементы теории систем фазовой синхронизации. М.: МЭИ, 2006.
  15. Матросов В.В. Динамика нелинейных систем. Программный комплекс для исследования нелинейных динамических систем с непрерывным временем. Н. Новгород: ННГУ, 2002.
Поступила в редакцию: 
03.12.2009
Принята к публикации: 
25.03.2010
Опубликована: 
29.10.2010
Краткое содержание:
(загрузок: 42)