ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Kapitza pendulum

Chaotic dynamics of pendulum ring chain with vibrating suspension

Topic and aim. The aim of the work is to introduce into consideration a mechanical system that is a chain of oscillators capable of demonstrating hyperbolic chaos due to the presence of attractor in the form of the Smale–Williams solenoid. Investigated model. We study the pendulum ring chain with parametric excitation due to the vertical oscillating motion of the suspension alternately at two different frequencies, so that the standing wave patterns appear in the chain with a spatial scale that differs by three times.

The averaging method, a pendulum with a vibrating suspension: N.N. Bogolyubov, A. Stephenson, P.L. Kapitza and others

The main moments of the historical development of one of the basic methods of nonlinear systems investigating (the averaging method) are traced. This method is understood as a transition from the so-called exact equation dx/dt = εX(t, x) (ε is small parameter), to the averaging equation dξ/dt = εX0(ξ) + ε2P2(ξ) + ... + εmPm(ξ) by corresponding variable substitution.Bogolyubov–Krylov’s approach to the problem of justifying the averaging method, based on the invariant measure theorem, is analyzed.