ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Multistability and memory effects in dynamical system with cosymmetric potential

The purpose of present study is the analysis of strong multistability in a dynamical system with cosymmetry. We study the dynamics and realization of steady-states in a mechanical system with two degrees of freedom. The minimum potential energy of the system is achieved on a curve in the form of an ellipse, which gives rise to a continuum family of equilibria and strong multistability. This problem belongs to the class of dynamical systems with cosymmetry. Methods.

Мультистабильность и эффекты памяти в динамической системе с косимметричным потенциалом

Цель настоящего исследования -- анализ сильной мультистабильности в динамической системе с косимметрией. Исследуется динамика и реализация стационарных состояний в механической системы с двумя степенями свободы. Минимум потенциальной энергии системы достигается на кривой в форме эллипса, что порождает континуальное семейство равновесий и сильную мультистабильность. Данная задача относится к классу динамических систем с косимметрией.

Bifurcations of one-parameter families of steady state regimes in model of a filtrational convection

Results of numerical investigation of bifurcations of one-parameter families of steady state regimes in a planar filtrational convection problem are presented. Galerkin’s method is applied for approximation of partial differential equations. As a result of the cosymmetry existence there are curves of equilibria with the hidden parameter. The algorithm of calculation of such curves is described. This algorithm can be applied to analyze systems with nonisolated sets of equilibria.