ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Alekseev A. A., Kozlov A. K., Shalfeev V. D. Chaotic regime and synchronous response in generator with frequency feedback control loop. Izvestiya VUZ. Applied Nonlinear Dynamics, 1994, vol. 2, iss. 1, pp. 71-77. DOI: 10.18500/0869-6632-1994-2-1-71-77

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
621.373.121

Chaotic regime and synchronous response in generator with frequency feedback control loop

Autors: 
Alekseev Aleksandr Aleksandrovich, Lobachevsky State University of Nizhny Novgorod
Kozlov Aleksandr Konstantinovich, Lobachevsky State University of Nizhny Novgorod
Shalfeev Vladimir Dmitrievich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

The nonlinear complex signal processing based on the phenomena of chaotic generation and synchronous response is considered in application to the model of generator with the local frequency control feedback loop. The conditions for the perfect system’s functioning are defined.

Key words: 
Acknowledgments: 
The work was carried out with financial support from the Russian Foundation for Basic Research (project 93-03-15424).
Reference: 
  1. Afraimovich VS, Verichev NN, Rabinovich МI. Stochastic synchronisation of oscillations in dissipative systems. Radiophysics and Quantum Electronics. 1986;29(9):1050-1060. (in Russian).
  2. Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Forced and mutual synchronization of chaos. Soviet Journal of Communication Technology and Electronics. 1991;36(2):338-351. (in Russian).
  3. Volkovskii AR, Rulkov NF. Threshold synchronisation of relaxation chaotic generators. Tech. Phys. Lett. 1992;18(13):22-26.
  4. Alekseev AA, Shalfeev VD. Stochastic synchronisation in an ensemble of auto-oscillation systems with feedback. Tech. Phys. Lett. 1993;19(21):12-15.
  5. Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
  6. Chua LO, Kocarev L, Eckert К. Experimental chaos synchronization in Chua’s circuit. Int. J. Bif. Chaos. 1992;2(3):705-708. DOI: 10.1142/S0218127492000811.
  7. de Sousa Vieira M, Khoury P, Lichtenberg AJ, Lieberman MA, Wonchoba W, Gullicksen J, Huang JY, Sherman R, Steinberg М. Numerical and experimental studies of self-synchronization and synchronized chaos. Int. J. Bif. Chaos.  1992;2(3):645-657. DOI: 10.1142/S0218127492000768.
  8. Kocarev L, Halle KS, Eckert K, Chua LO, Parlitz. Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bif. Chaos.  1992;2(3)709-713. DOI: 10.1142/S0218127492000823.
  9. Volkevskii AR, Rulkov NF. Synchronised chaotic response of a nonlinear oscillatory system as a principle of detecting the information component of chaos. Tech. Phys. Lett. 1993;19(3):71-75.
  10. Belskii YuL, Dmitriev AS. Transfer of information with the help of deterministic chaos. J. Comm. Tech. Electron. 1993;38(7):1310-1315.
  11. Zaulin IА, Ponomarenko VP. Dynamic modes and bifurcation phenomena in nonlinear static synchronisation systems. J. Comm. Tech. Electron. 1993;38(5):889-900.
  12. Alekseev АА. Regular and chaotic modes of the frequency-controlled generator. Tech. Phys. Lett. 1993;19(21):16-20.
  13. Shilnikov LP. Bifurcation theory and Lorentz model. In: Marsden J, McCraken M. Bifurcation of the Birth of the Cycle and its Applications. М.: Mir; 1980. P. 317-335.
Received: 
17.12.1993
Accepted: 
22.03.1994
Published: 
27.06.1994