For citation:
Kuznetsov A. P., Kuznetsova A. Y., Sataev I. R. Critical behavior оf thе мар with Neimark-Sackers bifurcation for the phase synchronization breakup at the accumulation point of period doubling cascade. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 1, pp. 12-18. DOI: 10.18500/0869-6632-2003-11-1-12-18
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
517.9
Critical behavior оf thе мар with Neimark-Sackers bifurcation for the phase synchronization breakup at the accumulation point of period doubling cascade
Autors:
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kuznetsova Anna Yurevna, Saratov State University
Sataev Igor Rustamovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract:
Universality and scaling are discussed for the case of the phase synchronization breakup at the accumulation point of period doubling cascade in two-dimensional map with supercritical Neimark-Sackers bifurcation.
Key words:
Acknowledgments:
This work was supported by the Federal Target Programme Integration and the American Foundation for Civic Research and Development (CRDF grant REC-006), as well by the Foundation for Promotion of National Science
Reference:
- Schuster HG. Deterministic Chaos: An Introduction. VCH Publishers; 1984. 220 p.
- Kuznetsov SP. Dynamic Chaos. Moscow: Fizmatlit; 2001. 296 p. (in Russian).
- Thompson JM, Stewart HB. Nonlinear Dynamics and Chaos. Wiley and Sons; New York, 1986. 392 p.
- Kuznetsov SP, Sataev IR. Period-doubling for two-dimensional non-invertible maps: Renormalization group analysis and quantitative universality. Physica D. 1997;101(3–4):249–269. DOI: 10.1016/S0167-2789(96)00237-0.
- Kuznetsov SP, Sataev IR. New types оf critical dynamics for two-dimensional maps. Phys. Lett. А. 1992;162(3):236–242. DOI: 10.1016/0375-9601(92)90440-W.
- Kuznetsov AP, Kuznetsov SP, Sataev IR. A variety of period-doubling universality classes in multi-parameter analysis оf transition to chaos. Physica D. 1997;109(1–2):91–112. DOI: 10.1016/S0167-2789(97)00162-0.
- Maistrenko V, Maistrenko Y, Sushko I. Noninvertible two-dimensional maps arising in radiophysics. Int. J. Bifurc. Chaos. 1994;4(2):383–400. DOI: 10.1142/S0218127494000253.
Received:
21.10.2002
Accepted:
12.05.2003
Available online:
10.11.2023
Published:
30.05.2003
Journal issue:
- 658 reads