ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Landa P. S. Turbulence in jet flows: what is it?. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 6, pp. 17-27. DOI: 10.18500/0869-6632-2004-12-6-17-27

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
534.1+532.525.2+532.526.5

Turbulence in jet flows: what is it?

Autors: 
Landa Polina Solomonovna, Lomonosov Moscow State University
Abstract: 

Brief description of the properties of turbulent flows in submerged subsonic jets is given. Within the jet’s initial part, where turbulent pulsations are sufficiently small, the asymptotic Krylov-Bogolyubov method is used for calculating of the jet processes. It is shown that the results оf the calculations are in good coincidence with experimental data.

Key words: 
Reference: 
  1. Bovsheverov BM, Krasilnikov BH. Preliminary results of acoustic sounding of the atmosphere by a monochromatic beam. Moskow: DAN USSR. 1941;30:44–46.
  2. Kolmogorov AN. Local structure of turbulence in an incompressible liquid at very large Reynolds numbers. Moskow: DAN USSR. 1941;30(4):299–303.
  3. Kolmogorov AN. Energy dissipation in locally isotropic turbulence. Moskow: DAN USSR. 1941;32(1):19–21.
  4. Obukhov AM. About energy distribution in the spectrum of a turbulent flow. Moskow: DAN USSR. 1941;32(1):22–24.
  5. Segel D, L’vov VS, Procaccia I. Extended self-similarity in turbulent systems: ап analytically solvable example. Phys. Rev. Letters. 1996;76(11):1828. DOI: 10.1103/PhysRevLett.76.1828.
  6. L’vov VS, Procaccia I. Towards а nonperturbative theory оf hydrodynamic turbulence: fusion rules, exact bridge relations and anomalous scaling functions. Phys. Rev. Е. 1996;54(6):6268.
  7. Hagen G. On the movement of water in narrow cylindrical pipes. Ann. Phys. 1839;122(3):423-442. DOI: 10.1002/andp.18391220304.
  8. Reynolds O. An experimental investigation of the circumstances which determine whether the motion оf water shall be direct оs sinouos, and the law оf resistance in parallel channels. London: Phil. Trans. Soc. 1883;174:935.
  9. Heisenberg W. On the stability and turbulence of fluid flows. Ann. Phys. 1924;74:577.
  10. Landau LD. On the Problem of Turbulence. Moskow: DAN USSR. 1944, W.44, P. 339-342. DOI: 10.1016/b978-0-08-010586-4.50057-2.
  11. Landa PS. Emergence of turbulence in unclosed liquid flows as a nonequilibrium noise-induced phase transition of the second kind. Tech. Phys. 1998;68(1):31–39.
  12. Landa PS, Zaikin AA. Non-equilibrium noise-induced phase transitions in simple systems. J. Exp. Theor. Phys. 1997;111(1):358.
  13. Chih-Ming H, Nosseir NS. Dynamics оf аn impinging jet 1. The feedback phenomenon. J. Fluid Mech. 1981;105:192–142. DOI: 10.1017/S0022112081003133.
  14. Landa PS, McClintock PVE. Development of turbulence in subsonic submerged jets. Phys. Rep. 2004;397(1):1–62. DOI: 10.1016/S0370-1573(04)00131-0.
  15. Crighton DG, Gaster M. Stability оf slowly diverging jet flow. J. Fluid Mech. 1976;77(2):397-413. DOI: 1017/S0022112076002176.
  16. Plaschko Р. Helical instabilities оf slowly diverging jets. J. Fluid Mech. 1979;92:209–215. DOI: 10.1017/S0022112079000598.
  17. Michalke А. Survey оn jet instability theory. Progr. Aerosp. Sci. 1984;21:159–199. DOI: 10.1016/0376-0421(84)90005-8.
  18. Linevskiy AS. Theory of Turbulent Jets and Traces. Moskow: Mashinovedenie; 1969. 400 p.
  19. Belotserkovsky SM, Ginevsky AS. Modeling of Turbulent Jets and Trails by the Method of Discrete Vortices. Moskow: Nauka; 1995. 368 p.
  20. Landa PS. Auto Oscillations in Distributed Systems. Мoskow: Nauka; 1983. 320 p.
  21. Keldysh MV. On eigenvalues and eigenfunctions of some classes of non-self-adjoint equations. Moskow: DAN USSR. 1951;77(1):11–14.
Received: 
25.12.2004
Accepted: 
04.05.2005
Published: 
15.06.2005