ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
535:530.182 + 519.713

Bifurcation diagram in case of ring interferometer containing liquid crystal: effect of diffusion

Autors: 
Magazinnikov Anton Leonidovich, National Research Tomsk State University
Poizner Boris Nikolaevich, National Research Tomsk State University
Abstract: 

The bifurcation phenomena in optical ring interferometer containing nonlincar (Kerr) medium — liquid crystal — are investigated by means of a computer simulation. It has been found out that bifurcation points on a bifurcation diagram are displaced to area of greater parameter of medium nonlinearity when the diffusion factor increases. The distribution of intensity in cross section of output laser beam of system is constructed for the more evident description of hysteresis and bifurcations phenomena.

Key words: 
Acknowledgments: 
The authors are grateful to A.M. Timokhin for valuable mathematical advice.
Reference: 
  1. Tatarkova SA, Tuchin VV. Bifurcation mechanisms, structure and properties of chaotic attractors in a laser model with a saturated absorber. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(6):24. (in Russian).
  2. Kiveleva KV, Fraiman LA. Bifurcation analysis of nonlinear dynamics of a non-autonomous pendulum-type system. Izvestiya VUZ. Applied Nonlinear Dynamics. 1996;4(4-5):13. (in Russian).
  3. Bazhenov MV, Rabinovich MI, Rubchinskii LL. A simple model of a neuron with complex oscillatory activity. Izvestiya VUZ. Applied Nonlinear Dynamics. 1996;4(1):33-39. (in Russian).
  4. Akhmanov SA, Vorontsov MA, editors. New Physical Principles of Optical Information Processing. M.: Nauka; 1990. 398 p.
  5. Akhmanov SA, Vorontsov MA, Ivanov VYu, Larichev AV, Zheleznykh NI. Controlling transverse—wave interactions in nonlinear optics: generation and interaction оf spatiotemporal structures. JOSA B. 1992;9(1):78-90. DOI: 10.1364/JOSAB.9.000078.
  6. Vorontsov MA. Nonlinear wave spatial dynamics of light fields. Bulletin of Russian Academy of Sciences: Physics. 1992;56(4):7.
  7. Larichev AV, Nikolaev IP, Shmalgauzen VI. Hard excitation regime in a nonlinear optical system with distributed feedback. Quantum Electron. 1996;26(3):248-249. DOI: 10.1070/QE1996v026n03ABEH000639.
  8. Larichev AV, Nikolaev IP, Chulichkov AL. Spatiotemporal period doubling in а nonlinear interferometer with distributed optical feedback. Opt. Lett. 1996;21(15):1180-1182. DOI: 10.1364/OL.21.001180.
  9. Papoff F, D’Alessandro G, Орро G, Firth WJ. Local and global effects of boundaries on optical-pattern formation in Kerr media. Phys. Rev. A. 1994;48(1):634-641. DOI: 10.1103/physreva.48.634.
  10. Arecci FT. Space-time complexity in nonlinear optics. Physica D. 1991;51(1-3):450-464. DOI: 10.1016/0167-2789(91)90251-4.
  11. Arshinov AN, Mudarisov RR, Pojzner BN. Three Kerr media in the ring interferometer: the role of non-identity. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(1):20-27. (in Russian).
  12. Magazinnikov AL. Bifurcation diagram of stationary states of a nonlinear optical interferometer with two-dimensional feedback. Tomsk, 1997. 9 p. Archived in Russian Institute for Scientific and Technical Information 01.08.97. No. 2575-B97.
  13. Knyazeva EN, Kurdyumov SP. Laws of evolution and self-organization of complex systems. М.: Nauka; 1994. 239 p.
  14. Vorontsov МА, Koryabin АV, Shmalgauzen VI. Controlled optical systems. М.: Nauka; 1988. 272 p.
  15. Samarskii АА, Gulin АV. Numerical Methods. М.: Nauka; 1989. 432 p.
  16. Arshinov AI, Mudarisov RR, Poizner BN. Structuring mechanism in a nonlinear fizeau interferometer: Two-dimensional effects and the bifurcation pattern. Russian Physics Journal. 1997;40(3):222-225. DOI: 10.1007/BF02510819.
Received: 
06.01.1998
Accepted: 
02.04.1998
Published: 
08.07.1998