For citation:
Chepyzhov V. В. Trajectory attractors method for dissipative partial differential equations with small parameter. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 6, pp. 858-877. DOI: 10.18500/0869-6632-003142, EDN: XYHFND
Trajectory attractors method for dissipative partial differential equations with small parameter
The purpose of this work is to study the limit behaviour of trajectory attractors for some equations and systems from mathematical physics depending on a small parameter when this small parameter approaches zero. The main attention is given to the cases when, for the limit equation, the uniqueness theorem for a solution of the corresponding initial-value problem does not hold or is not proved. The following problems are considered: approximation of the 3D Navier–Stokes system using the Leray α-model, homogenization of the complex Ginzburg–Landau equation in a domain with dense perforation, and zero viscosity limit of 2D Navier–Stokes system with Ekman friction.
Methods. In this paper, the method of trajectory dynamical systems and trajectory attractors is used that is especially effective in the study of complicated partial differential equations for which the uniqueness theorem for a solution of the corresponding initial-value problem does not hold or is not proved.
Results. For all problems under the consideration, we obtain the limit equations and prove the Hausdorff convergence for trajectory attractors of the initial equations to the trajectory attractors of the limit equations in the appropriate topology when the small parameter tends to zero.
Conclusion. In the work, we demonstrate that the method of trajectory attractors is highly effective in the study of dissipative equations of mathematical physics with small parameter. We succeed to find the limit equations and to prove the convergence of trajectory attractors of the considered equations to the trajectory attractors of the limit (homogenized) equations in the corresponding topology as small parameter is vanishes.
- Babin AV, Vishik MI. Attractors of Evolution Equations. Amsterdam: North-Holland Publishing Co.; 1992. 532 p.
- Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd ed. Applied Mathematical Sciences, vol. 68. New York: Springer-Verlag; 1997. 650 p. DOI: 10.1007/978-1-4612-0645-3.
- Vishik MI, Chepyzhov VV. Attractors for equations of mathematical physics, American Mathematical Society Colloquium Publications, vol. 49. Providence, R.I.: American Mathematical Society; 2002. 364 p.DOI: 10.1090/coll/049.
- Sell GR. Global attractors for the three-dimensional Navier–Stokes equations. J. Dyn. Diff. Eq. 1996;8(1):1–33. DOI: 10.1007/BF02218613.
- Chepyzhov VV, Conti M, Pata V. A minimal approach to the theory of global attractors. Discrete and Continuous Dynamical Systems. 2012;32(6):2079–2088. DOI: 10.3934/dcds.2012.32.2079.
- Chepyzhov VV, Vishik MI. Trajectory attractors for evolution equations. C. R. Acad. Sci. Paris. 1995;321(I):1309–1314.
- Chepyzhov VV, Vishik MI. Evolution equations and their trajectory attractors. J. Math. Pures Appl. 1997;76(10):913–964. DOI: 10.1016/S0021-7824(97)89978-3.
- Vishik MI, Chepyzhov VV. Trajectory attractors for equations of mathematical physics. Russian Math. Surveys. 2011;66(4):637–731.
- Lions J-L. Quelques Methodes de Resolutions des Problemes aux Limites non Lineaires. Paris: Dunod, Gauthier-Villars; 1969. 554 p.
- Albritton D, Brue E, Colombo M. Gluing non-unique Navier-Stokes solutions. Ann. PDE. 2023;9(2):17. DOI: 10.1007/s40818-023-00155-8.
- Cheskidov A, Holm DD, Olson E., Titi ES. On Leray-α model of turbulence. Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences. 2005;461:629–649. DOI: 10.1098/rspa.2004.1373.
- Chepyzhov VV, Titi ES, Vishik MI. On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier–Stokes system. Discrete and Continuous Dyn. Sys. 2007;17(3):33–52.
- Chepyzhov VV. Approximating the trajectory attractor of the 3D Navier-Stokes system using various α-models of fluid dynamics. Sb. Math. 2016;207(4):610–638. DOI: 10.4213/sm8549.
- Bekmaganbetov KA, Chepyzhov VV, Chechkin GA. On attractors of reaction–diffusion equations in a porous orthotropic medium. Dokl. Math. 2021;103(3):103–107. DOI: 10.1134/S1064562421030030.
- Pedlosky J. Geophysical Fluid Dynamics. New York: Springer; 1979. DOI: 10.1007/978-1-4684-0071-7.
- Ilyin AA, Patni K, Zelik SV. Upper bounds for the attractor dimension of damped Navier–Stokes equations in R2. Discrete Contin. Dyn. Syst. 2016;36:2085–2102. DOI: 10.3934/dcds.2016.36.2085.
- Rosa R. The global attractor for the 2D Navier–Stokes flow on some unbounded domains. Nonlinear Anal. 1998;32:71–85. DOI: 10.1016/S0362-546X(97)00453-7.
- DiPerna R, Lions P. Ordinary differential equations, Sobolev spaces and transport theory. Invent. Math. 1989;98:511–547. DOI: 10.1007/BF01393835.
- Boyer F, Fabrie P. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183. New York: Springer; 2013. 526 p. DOI: 10.1007/978-1-4614-5975-0.
- Chepyzhov VV, Ilyin AA, Zelik SV. Strong trajectory and global W1,p-attractors for the dampeddriven Euler system in R2. Discrete Contin. Dyn. Syst. B. 2017;22(5):123–155. DOI: 10.3934/dcdsb.2017109.
- 21. Yudovich VI. Non-Stationary flow of an ideal incompressible fluid. USSR Computational Mathematics and Mathematical Physics. 1963;3(6):1407–1456. DOI: 10.1016/0041-5553(63)90247-7.
- Ilyin AA, Chepyzhov VV. On strong convergence of attractors of Navier–Stokes equations in the limit of vanishing viscosity. Math. Notes. 2017;101(4):746–750. DOI: 10.1134/S0001434617030336.
- Chepyzhov VV, Ilyin AA, Zelik SV. Vanishing viscosity limit for global attractors for the damped Navier-Stokes system with stress free boundary conditions. Physica D. 2018;376-377:31-38. DOI: 10.1016/j.physd.2017.08.005.
- 481 reads