Для цитирования:
Чепыжов В. В. Метод траекторных аттракторов для диссипативных уравнений в частных производных с малым параметром // Известия вузов. ПНД. 2024. Т. 32, вып. 6. С. 858-877. DOI: 10.18500/0869-6632-003142, EDN: XYHFND
Метод траекторных аттракторов для диссипативных уравнений в частных производных с малым параметром
Цель настоящего исследования — изучение предельного поведения траекторных аттракторов диссипативных уравнений и систем математической физики, зависящих от малого параметра, когда малый параметр стремится к нулю. Основное внимание уделено случаям, когда для предельного уравнения не выполнена или не доказана теорема единственности решения соответствующей начально-краевой задачи. Рассматриваются следующие задачи: аппроксимация 3D-системы Навье–Стокса с помощью α-модели Лерэ, усреднение комплексного уравнения Гинзбурга–Ландау в области с густой перфорацией, а также предел нулевой вязкости 2D-системы Навье–Стокса с экмановским трением.
Методы. В данной работе используется метод траекторных динамических систем и траекторных аттракторов, который особенно эффективен при изучении сложных уравнений с частными производными, для которых не имеет место или не доказана теорема единственности решения соответствующей начально-краевой задачи.
Результаты. Для всех рассмотренных задач получены предельные уравнения и доказана сходимость по Хаусдорфу траекторных аттракторов исходных уравнений к траекторным аттракторам предельных уравнений в подходящей топологии, когда малый параметр стремится к нулю.
Заключение. В работе показано, что метод траекторных аттракторов весьма эффективен при исследовании диссипативных уравнений математической физики с малым параметром. Удается найти предельные уравнения и доказать сходимость траекторных аттракторов изучаемых уравнений к траекторным аттракторам предельных уравнений в соответствующей топологии, когда малый параметр стремится к нулю.
- Бабин А. В., Вишик М. И. Аттракторы эволюционных уравнений. М.: Наука, 1989. 296 с.
- Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd ed. Applied Mathematical Sciences, vol. 68. New York: Springer-Verlag, 1997. 650 p. DOI: 10.1007/978-1-4612-0645-3.
- Vishik M. I., Chepyzhov V. V. Attractors for Equations of Mathematical Physics. American Mathematical Society Colloquium Publications, vol. 49. Providence, R.I.: American Mathematical Society, 2002. 364 p.DOI: 10.1090/coll/049.
- Sell G. R. Global attractors for the three-dimensional Navier–Stokes equations // J. Dyn. Diff. Eq. 1996. Vol. 8, no. 1. P. 1–33. DOI: 10.1007/BF02218613.
- Chepyzhov V. V., Conti M., Pata V. A minimal approach to the theory of global attractors // Discrete and Continuous Dyn. Sys. 2012. Vol. 32, iss. 6. P. 2079–2088. DOI: 10.3934/dcds.2012.32.2079.
- Chepyzhov V. V., Vishik M. I. Trajectory attractors for evolution equations // C. R. Acad. Sci. Paris. 1995. Vol. 321. Serie I. P. 1309–1314.
- Chepyzhov V. V., Vishik M. I. Evolution equations and their trajectory attractors // J. Math.Pures Appl. 1997. Vol. 76, no. 10. P. 913–964. DOI: 10.1016/S0021-7824(97)89978-3.
- Вишик М. И., Чепыжов В. В. Траекторные аттракторы уравнений математической физики // УМН. 2011. Т. 66, № 4. С. 3–102.
- Lions J.-L. Quelques Methodes de Resolutions des Problemes aux Limites non Lineaires. Paris:Dunod, Gauthier-Villars, 1969. 554 p.
- Albritton D., Brue E., Colombo M. Gluing non-unique Navier-Stokes solutions // Ann. PDE. 2023. Vol. 9, no. 2. 17. DOI: 10.1007/s40818-023-00155-8.
- Cheskidov A., Holm D. D., Olson E., Titi E. S. On Leray-α model of turbulence // Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences. 2005. Vol. 461. P. 629–649. DOI: 10.1098/rspa.2004.1373.
- Chepyzhov V. V., Titi E. S., Vishik M. I. On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier–Stokes system // Discrete and Continuous Dyn. Sys. 2007. Vol. 17, no. 3. P. 33–52.
- Чепыжов В. В. Об аппроксимации траекторного аттрактора 3D системы Навье–Стокса различными α-моделями гидродинамики // Матем. сб. 2016. Т. 207, № 4. С. 143–172. DOI: 10.4213/sm8549.
- Бекмаганбетов К.А., Чепыжов В.В., Чечкин Г.А. Об аттракторах уравнений реакции– диффузии в пористой ортотропной среде // Докл. РАН. Матем., информ., проц. упр. 2021. Т. 498. С. 10–15. DOI: 10.31857/S2686954321030036.
- Pedlosky J. Geophysical Fluid Dynamics. New York: Springer, 1979. DOI: 10.1007/978-1-4684-0071-7.
- Ilyin A. A., Patni K., Zelik S. V. Upper bounds for the attractor dimension of damped Navier–Stokes equations in R2 // Discrete and Continuous Dyn. Sys. 2016. Vol. 36. P. 2085–2102. DOI: 10.3934/dcds.2016.36.2085.
- Rosa R. The global attractor for the 2D Navier–Stokes flow on some unbounded domains // Nonlinear Anal. 1998. Vol. 32, iss. 1. P. 71–85. DOI: 10.1016/S0362-546X(97)00453-7.
- DiPerna R., Lions P. Ordinary differential equations, Sobolev spaces and transport theory // Invent. Math. 1989. Vol. 98. P. 511–547. DOI: 10.1007/BF01393835.
- Boyer F., Fabrie P. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183. New York: Springer, 2013. 526 p. DOI: 10.1007/978-1-4614-5975-0.
- Chepyzhov V. V., Ilyin A. A., Zelik S. V. Strong trajectory and global W1,p-attractors for the dampeddriven Euler system in R2 // Discrete Contin. Dyn. Syst. B. 2017. Vol. 22, iss. 5. P. 123–155. DOI: 10.3934/dcdsb.2017109.
- Юдович В. И. Нестационарные течения идеальной несжимаемой жидкости // Ж. Выч. Мат. Физ. 1963. Т. 3. С. 1032–1066.
- Ильин А. А., Чепыжов В. В. О сильной сходимости аттракторов уравнений Навье–Стокса в пределе исчезающей вязкости // Матем. заметки. 2017. Т. 101, № 4. С. 635–639. DOI: 10.4213/mzm11457.
- Chepyzhov V. V., Ilyin A. A., Zelik S. V. Vanishing viscosity limit for global attractors for the damped Navier-Stokes system with stress free boundary conditions // Physica D. 2018. Vol. 376–377. P. 31–38. DOI: 10.1016/j.physd.2017.08.005.
- 120 просмотров