For citation:
Gonchenko A. S. On discrete Lorenz attractors of various types. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 6, pp. 832-857. DOI: 10.18500/0869-6632-003140, EDN: UNTBDB
On discrete Lorenz attractors of various types
The purpose of this work is to develop the theory of discrete attractors of Lorenz type in the case of three-dimensional maps. In this case, special attention will be paid to standard discrete Lorenz attractors, as well as discrete Lorenz attractors with axial symmetry (i.e. with symmetry x → -x, y → -y, z → -z characteristic of flows with the Lorenz attractors).
The main results of the work are related to the construction of elements of classification of such attractors. For various types of discrete Lorenz attractors, we will describe their basic geometric and dynamical properties, and also present the main phenomenological bifurcation scenarios in which they arise. In the work we also consider specific examples of discrete Lorenz attractors of various types in three-dimensional quadratic maps such as three-dimensional Henon maps and quadratic maps with axial symmetry and constant Jacobian. For the latter, their normal forms will be constructed — universal maps, to which any map from a given class can be reduced by means of linear coordinate transformations.
- Lorenz EN. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963;20(2): 130–141. DOI: 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
- Guckenheimer J. A strange, strange attractor. In: The Hopf Bifurcation Theorem and its Applications. Applied Mathematical Sciences, vol. 19. New York: Springer, 1976. P. 368–381. DOI: 10.1007/978-1-4612-6374-6_25.
- Williams RF. The structure of Lorenz attractor. Lecture Notes in Math. 1977;615:94–112.
- Afraimovich VS, Bykov VV, Shilnikov LP. The origin and structure of the Lorenz attractor. Sov. Phys. Dokl. 1977;22:253–255.
- Afraimovich VS, Bykov VV, Shilnikov LP. On attracting structurally unstable limit sets of Lorenz attractor type. Trans. Mosc. Math. Soc. 1982;44:153–216.
- Kaplan JL, Yorke JA. Predturbulence: a regime observed in a fluid flow model of Lorenz. Comm. Math. Phys. 1979;67(2):93–108. DOI: 10.1007/BF01221359.
- Shilnikov LP. Bifurcation theory and the Lorenz model. In: Marsden JE, McCracken M. The Hopf Bifurcation and Its Applications. New York: Springer; 1976. P. 317–336.
- Shilnikov LP. Bifurcation theory and quasihyperbolic attractors. Usp. Mat. Nauk. 1981;36(4):240.
- Bunimovich LA, Sinai YaG. Stochasticity of attractor in Lorenz model. Nonlinear Waves. Moscow: Nauka; 1979. P. 212–260.
- Bunimovich L. Statistical properties of Lorenz attractors. Nonlinear Dynamics and Turbulence / G.I. Barenblatt (ed.) – Boston etc.: Pitman. 1983: 1–22.
- Rand D. The topological classification of Lorenz attractor. Math. Proc. of Cambridge Phil. Soc. 1978;83(3):451–460.
- Malkin MI. On topological conjugacy of discontinuous maps of interval. Ukrainian Math. J. 1980;32(5):610–616.
- Morales CA, Pacifico MJ, Pujals ER. On C1 robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Ser. I Math. 1998;326:81–86.
- Sataev EA. Some properties of singular hyperbolic attractors. Sb. Math. 2009;200(1):35–76.
- Turaev DV, Shilnikov LP. An example of a wild strange attractor. Sb. Math. 1998;189:291–314.
- Turaev DV, Shilnikov LP. Pseudo-hyperbolicity and the problem on periodic perturbations of Lorenz-like attractors. Doklady Mathematics. 2008; 77(1): 17–21.
- Gonchenko S, Ovsyannikov I, Simo C, Turaev D. Three-dimensional Henon-like maps and wild Lorenz-like attractors. Int. J. of Bifurcation and Chaos. 2005; 15(11): 3493–3508
- Gonchenko AS, Gonchenko SV, Shilnikov LP. Towards scenarios of chaos appearance in threedimensional maps. Rus. J. Nonlinear Dynamics. 2012;8:3-28 (in Russian).
- Gonchenko SV, Gonchenko AS, Ovsyannikov II, Turaev DV. Examples of Lorenz-like Attractors in Henon-like Maps. Math. Model. Nat. Phenom. 2013;8(5):48–70. DOI: 10.1051/mmnp/20138504.
- Gonchenko AS, Gonchenko SV, Kazakov AO, Turaev D. Simple scenarios of onset of chaos in three-dimensional maps. Int. J. Bif. and Chaos. 2014;24(8):25.
- Gonchenko A, Gonchenko S. Variety of strange pseudohyperbolic attractors in three-dimensional generalized Henon maps. Physica D. 2016;337:43–57.
- Henon M. A two-dimensional mapping with a strange attractor. In: Hunt BR, Li TY, Kennedy JA, Nusse HE. (eds) The Theory of Chaotic Attractors. New York: Springer, 1976. P. 94–102. DOI: 10.1007/978-0-387-21830-4_8.
- Gonchenko S, Gonchenko A. On discrete Lorenz-like attractors in three-dimensional maps with axial symmetry. Chaos. 2023;33(12):123104. DOI: 10.1063/5.0172243
- Gonchenko S, Gonchenko A, Kazakov A, Samylina E. On discrete Lorenz-like attractors. Chaos. 2021;31(2):023117. DOI: 10.1063/5.0037621.
- Gonchenko S, Karatetskaia E, Kazakov A, Kruglov V. Conjoined Lorenz twins - a new pseudohyperbolic attractor in three-dimensional maps and flows. Chaos. 2022;32(12):121107. DOI: 10.1063/5.0123426.
- Aframovich VS, Shilnikov LP. Strange attractors and quasiattractors. In: GI Barenblatt, G Iooss, DD Joseph (eds) Nonlinear Dynamics and Turbulence. Boston: Pitmen; 1983. P. 1–34.
- Gonchenko S, Turaev D, Shilnikov L. Dynamical phenomena in multidimensional systems with nontransversal Poincare homoclinic orbits. Rus. Math. Docl. 1993;330(2):144-147.
- Gonchenko S, Shilnikov L, Turaev D. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. Chaos. 1996;6(1):15-31.
- Gonchenko SV, Shilnikov LP, Turaev DV. On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. Nonlinearity. 2008;21(5):923–972. DOI: 10.1088/0951-7715/21/5/003.
- Gonchenko AS, Gonchenko SV, Kazakov AO, Kozlov AD. Elements of Contemporary Theory of Dynamical Chaos: A Tutorial. Part I. Pseudohyperbolic Attractors. Int. J. Bifurcation and Chaos. 2018;28(11):1830036. DOI: https://doi.org/10.1142/S0218127418300367.
- Gonchenko SV, Kazakov AO, Turaev D. Wild pseudohyperbolic attractors in a four-dimensional Lorenz system. Nonlinearity. 2021;34(4):2018–2047.
- Shilnikov LP. Bifurcation theory and turbulence. Selecta Mathematica Sovietica. 1991;10(1):43-53.
- Gonchenko SV, Gonchenko AS, Kazakov AO. Richness of chaotic dynamics in nonholonomic models of a Celtic stone. Regular and Chaotic Dynamics. 2013;18(5):521-538. DOI: 10.1134/S1560354713050055.
- Gonchenko AS, Gonchenko SV, Turaev D. Doubling of invariant curves and chaos in threedimensional diffeomorphisms. Chaos. 2021;31(11):113130. DOI: 10.1063/5.0068692.
- Gonchenko A, Samylina E. On the region of existence of a discrete Lorenz attractor in the nonholonomic model of a Celtic stone. Radiophys. Quantum Electron. 2019;62(5):369–384. DOI: 10.1007/s11141-019-09984-9
- Newhouse SE. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math. Inst. Hautes Etudes Sci. 1979;50:101–151.
- Gonchenko SV, Turaev DV, and Shilnikov LP. On the existence of Newhouse regions in a neighborhood of systems with a structurally unstable homoclinic Poincare curve (the multidimen- sional case). Doklady Akademii Nauk. 1993;329:404–407.
- Gonchenko SV, Shilnikov LP. Invariants of Ω-conjugacy of diffeomorphisms with a nongeneric homoclinic trajectory. Ukr. Math. J. 1990;42:134-140.
- Gonchenko SV, Turaev DV, Shilnikov LP. Homoclinic tangencies of an arbitrary order in Newhouse domains. J. Math. Sci. 2001;105:1738-1778.
- Gonchenko SV, Shil’nikov LP, Turaev DV. On models with non-rough Poincare homoclinic curves. Physica D. 1993;62(1—4):1–14. DOI: 10.1016/0167-2789(93)90268-6.
- Shimizu T, Morioka N. On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Phys. Lett. A. 1980;76:201–204. DOI: 10.1016/0375-9601(80)90466-1.
- Shilnikov AL, Shilnikov LP, Turaev DV. Normal forms and Lorenz attractors. Int. J. of Bifurcation and chaos. 1993;3:1123–1139.
- Shilnikov AL. On bifurcations of the Lorenz attractor in the Shimuizu-Morioka model. Physica D. 1993;62:338–346.
- 225 reads