Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Павлова О. Н., Павлов А. Н. Ритмические процессы авторегуляции почечного кровотока и их взаимодействие в форме модуляции колебаний // Известия вузов. ПНД. 2010. Т. 18, вып. 2. С. 98-112. DOI: 10.18500/0869-6632-2010-18-2-98-112

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 143)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
57.087

Ритмические процессы авторегуляции почечного кровотока и их взаимодействие в форме модуляции колебаний

Авторы: 
Павлова Ольга Николаевна, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Павлов Алексей Николаевич, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Аннотация: 

Авторегуляция почечного кровотока на уровне индивидуальных нефронов включает два взаимодействующих механизма, приводящих к генерации колебаний с разными временными масштабами: канальцево-гломерулярную обратную связь и миогенный отклик. На основе вейвлет-анализа экспериментальных данных в данной работе изучаются эффекты амплитудной и частотной модуляции миогенных колебаний ритмом канальцево-гломерулярной обратной связи. Отмечаются особенности нелинейных зависимостей девиации амплитуды и частоты модулируемого процесса от амплитуды модулирующих колебаний. Показывается, что эффекты модуляции существенно отличаются в норме и при гипертонии.  

Список источников: 
  1. Schreiber T. Interdisciplinary application of nonlinear time series methods // Physic Reports. 1999. Vol. 308, No 1. P. 11.
  2. Tsay R.S. Detecting and modeling nonlinearity in univariate time series analysis // Statistica Sinica. 1991. Vol. 1. P. 431.
  3. Kaplan D.T. and Glass L. Direct test for determinism in a time series // Phys. Rev. Lett. 1992. Vol. 68. P. 427.
  4. Kennel M.B. and Isabelle S. Method to distinguish possible chaos from colored noise and to determine embedding parameters // Phys. Rev. A. 1992. Vol. 46. P. 3111.
  5. Theiler J., Galdrikian B., Longtin A., Eubank S., and Farmer J.D. Detecting nonlinear structure in time series // Physica D. 1992. Vol. 58. P. 77.
  6. Palus M. Testing for nonlinearity using redundancies: Quantitative and qualitative aspects // Physica D. 1995. Vol. 80. P. 186.
  7. Palus M. Detecting nonlinearity in multivariate time series // Phys. Lett. A. 1996. Vol. 213. P. 138.
  8. Janson N.B., Balanov A.G., Anishchenko V.S., and McClintock P.V.E. Phase synchronization between several interacting processes from univariate data // Phys. Rev. Lett. 2001. Vol. 86. P. 1749.
  9. Rosenblum M.G. and Pikovsky A.S. Detecting direction of coupling in interacting oscillators // Phys. Rev. E. 2001. Vol. 64. 045202(R).
  10. Palus M. and Stefanovska A. Direction of coupling from phases of interacting oscillators: An information-theoretic approach // Phys. Rev. E. 2003. Vol. 67. 055201.
  11. Smirnov D.A. and Bezruchko B.P. Estimation of interaction strength and direction from short and noisy time series // Phys. Rev. E. 2003. Vol. 68. P. 046209.
  12. Cimponeriu L., Rosenblum M., and Pikovsky A. Estimation of delay in coupling from time series // Phys. Rev. E. 2004. Vol. 70. 046213.
  13. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H., and Marsh D.J. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation // Phys. Rev. E. 2004. Vol. 70. 031915.
  14. Bezruchko B., Ponomarenko V., Rosenblum M.G., and Pikovsky A.S. Characterizing direction of coupling from experimental observations // Chaos. 2003. Vol. 13. P. 179.
  15. Palus M., Komarek V., Hrncir Z., and Sterbova K. Synchronization as adjustment of information rates: Detection from bivariate time series // Phys. Rev. E. 2001. Vol. 63. 046211.
  16. Janson N.B., Balanov A.G., Anishchenko V.S., and McClintock P.V.E. Phase relationships between two or more interacting processes from one-dimensional time series.II. Application to heart-rate-variability data // Phys. Rev. E. 2002. Vol. 65. 036212.
  17. Rosenblum M.G., Cimponeriu L., Bezerianos A., Patzak A., and Mrowka R. Identification of coupling direction: Application to cardiorespiratory interaction // Phys. Rev. E. 2002. Vol. 65. 041909.
  18. Mrowka R., Cimponeriu L., Patzak A. and Rosenblum M.G. Directionality of coupling of physiological subsystems – age related changes of cardiorespiratory interaction during different sleep stages in babies // Am. J. Physiol. Regul. Comp. Integr. Physiol. 2003. Vol. 285. R1395-R1401.
  19. Smirnov D.A., Bodrov M.B., Perez Velazquez J.L., Wennberg R.A., and Bezruchko B.P. Estimation of coupling between oscillators from short time series via phase dynamics modeling: Limitations and application to EEG data // Chaos. 2005. Vol. 15. 024102.
  20. Gonzalez-Fernandez J.M., Ermentrout G.B. On the origin and dynamics of the vasomotion of small arteries / // Math. Biosci. 1994. Vol. 240. P. 127.
  21. Horowitz A., Menice C.B., Laporte R., Morgan K.G. Mechanisms of smooth muscle contraction // Physiol. Rev. 1996. Vol. 76. P. 967.
  22. Leyssac P.P., Holstein-Rathlou N.-H. Effects of various transport inhibitors on oscillating tubuloglomerular feedback pressure responses in the rat // Pflugers Arch. 1986. Vol. 407. P. 285.
  23. Chon K.H., Raghavan R., Chen Y.M., Marsh D.J., Yip K.-P. Interactions of TGF-dependent and TGF-independent oscillations in tubular pressure / // Am. J. Physiol. (Renal Physiol.) 2005. Vol. 288. P. F298.
  24. Casellas D., Moore L.C. Autoregulation and tubuloglomerular feedback in juxtame-dullary glomerular arterioles // Am. J. Physiol. (Renal Fluid Electrolyte Physiol.) 1990. Vol. 258. P. F660.
  25. Holstein-Rathlou N.-H., He J., Wagner A.J., Marsh D.J. Patterns of blood pressure variability in normotensive and hypertensive rats // Am. J. Physiol. (Regul. Integr. Comp. Physiol.) 1995. Vol. 269. P. R1230.
  26. Holstein-Rathlou N.-H., Leyssac P.P. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats // Acta Physiol. Scand. 1986. Vol. 126. P. 333. Synchronization as adjustment
  27. Leyssac P.P., Holstein-Rathlou N.-H. Tubulo-glomerular feedback response: enhancement in adult spontaneously hypertensive rats and effects of anaesthetics // Pflugers  Arch. 1989. Vol. 413. P. 267.
  28. Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Chaos in blood flow control in genetic and renovascular hypertensive rats // Am. J. Physiol. (Renal Fluid Electrolyte Physiol.) 1991. Vol. 261. P. F400.
  29. Yip K.-P., Marsh D.J., Holstein-Rathlou N.-H. Low dimensional chaos in renal blood flow control in genetic and experimental hypertension // Physica D. 1995. Vol. 80. P. 95.
  30. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats // Am. J. Physiol. (Renal Physiol.). 2007. Vol. 293. P. F1545.
  31. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H., Marsh D.J. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation // Phys. Rev. E. 2004. Vol. 70. P. 031915.
  32. Marsh D.J., Sosnovtseva O.V., Pavlov A.N., Yip K.-P., Holstein-Rathlou N.-H. Frequency encoding in renal blood flow regulation // Am. J. Physiol. (Regul. Integr. Comp. Physiol.). 2005. Vol. 288. P. R1160.
  33. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H., Marsh D.J. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics // Physiological Measurement. 2005. Vol. 26. P. 351.
  34. Pavlov A.N., Makarov V.A., Mosekilde E., Sosnovtseva O.V. Application of wavelet-based tools to study the dynamics of biological processes // Briefings in Bioinfor-matics. 2006. Vol. 7. P. 375.
  35. Sosnovtseva O.V., Pavlov A.N., Pavlova O.N., Mosekilde E., Holstein-Rathlou N.-H. Characterizing the effect of L-name on intra- and inter-nephron synchronization // European Journal of Pharmaceutical Sciences. 2009. Vol. 36. P. 39.
  36. Smedley G.T., Yip K.-P. Wagner, A.J., Dubovitsky S., Marsh D.J. A laser Doppler velocimetry instrument for in-vivo measurements of blood flow in single renal arterioles / // IEEE Trans. Biomed. Eng. 1993. Vol. 40. P. 290.
  37. Mallat S.G. A wavelet tour of signal processing. New York: Academic Press, 1998.
  38. Addison P.S. The illustrated wavelet transform handbook: applications in science, engineering, medicine and finance. Bristol; Philadelphia: IOP Publishing, 2002.
  39. Kaiser G. A friendly guide to wavelets. Boston: Birkhauser, 1994.
  40. Press W.H., Flannery B.P., Teucolsky S.A., Vetterling W.T. Numerical recipes: the art of scientific computing / Cambridge University Press, New York, 1986.
Поступила в редакцию: 
03.09.2009
Принята к публикации: 
17.02.2010
Опубликована: 
30.04.2010
Краткое содержание:
(загрузок: 87)