Для цитирования:
Клиньшов В. В. Коллективная динамика сетей активных элементов с импульсными связями: Обзор // Известия вузов. ПНД. 2020. Т. 28, вып. 5. С. 465-490. DOI: 10.18500/0869-6632-2020-28-5-465-490
Коллективная динамика сетей активных элементов с импульсными связями: Обзор
Цель настоящей работы – обзор исследований коллективной динамики в сетях активных элементов с импульсными связями. Для многих сетевых колебательных систем характерно межэлементное взаимодействие в форме обмена короткими сигналами, или импульсами. Важнейший класс сетевых систем, для которых характерен импульсный тип взаимодействий – биологические нейронные сети, то есть популяции нервных клеток. Описаны основные известные подходы к исследованию сетей с импульсными связями и систематизированы полученные к настоящему времени результаты. Рассматриваемые в обзоре работы используют, как правило, достаточно простые модели для описания локальной динамики элементов сети типа накопление-и-сброс или ее обобщения. Простота этих моделей позволяет во многих случаях исследовать их аналитически, и основные идеи этого анализа описаны в обзоре. Что касается структуры рассматриваемых сетей, они достаточно разнообразны и включают полносвязные сети, сети с редкими связями, многопопуляционные и модульные (кластерные) сети. Обзор структурирован по типу коллективной динамики, наблюдаемой в сетях с импульсными связями. Сначала описаны работы по синхронной динамике, исследование которой в сетях с импульсными связями было исторически первым. Далее мы переходим к асинхронной динамике, характеризующейся отсутствием корреляции между моментами генерации импульсов различными элементами сети. Важным частным случаем такой динамики является нерегулярная асинхронная динамика, рассмотренная в следующем разделе. Наконец, рассматриваются частичносинхронные режимы, характеризующиеся выраженными колебаниями среднего поля. В конце обзора систематизированы современные подходы к редукции сетевой динамики, направленные на получение низкоразмерных динамических систем, описывающих динамику сети в терминах усредненных переменных
- Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.U. Complex networks: Structure and dynamics // Phys. Rep. 2006. Vol. 424. P. 175.
- Масленников О.В., Некоркин В.И. Адаптивные динамические сети // Усп. физ. наук. 2017. T. 87. C. 745.
- Некоркин В.И. Нелинейные колебания и волны в нейродинамике // Усп. физ. наук. 2008. T. 178. C. 313.
- Рабинович М.И., Мюезинолу М.К. Нелинейная динамика мозга: эмоции и интеллектуальная деятельность // Усп. физ. наук. 2010. T. 180. C. 371.
- Strogatz S. Sync: The Emerging Science of Spontaneous Order. Penguin UK, 2004.
- Winfree A.T. The Geometry of Biological Time. Springer, 2001.
- Luo C.-h., Rudy Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction // Circulation Research. 1991. Vol. 68, no. 6. P. 1501–1526.
- Peskin C.S. Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences. New York University, New York, 1975.
- Pagliari R., Scaglione A. Scalable network synchronization with pulse-coupled oscillators // IEEE Transactions on Mobile Computing. 2011. Vol. 10, no. 3. P. 392–405.
- Vladimirov A.G., Turaev D. Model for passive mode locking in semiconductor lasers // Physical Review A. 2005. Vol. 72. P. 33808.
- Lopera A., Buldu J.M., Torrent M.C., Chialvo D.R., Garc ´ ´ıa-Ojalvo J. Ghost stochastic resonance with distributed inputs in pulse-coupled electronic neurons // Physical Review E. 2006. Vol. 73, no. 2. P. 21101.
- Vanag V.K., Smelov P.S., Klinshov V.V. Dynamical regimes of four almost identical chemical oscillators coupled via pulse inhibitory coupling with time delay // Phys. Chem. Chem. Phys. 2016. Vol. 18, no. 7. P. 5509–5520.
- Buck J., Buck E. Mechanism of rhythmic synchronous flashing of fireflies: Fireflies of southeast asia may use anticipatory time-measuring in synchronizing their flashing // Science. 1968. Vol. 159, no. 3821. P. 1319–1327.
- Neda Z., Ravasz E., Brechet Y., Vicsek T., Barab ´ asi A.-L. ´ Self-organizing processes: The sound of many hands clapping // Nature. 2000. Vol. 403, no. 6772. P. 849.
- Klinshov V.V., Nekorkin V.I. The map with no predetermined firing order for the network of oscillators with time-delayed pulsatile coupling // Commun. Nonlinear Sci. Numer. Simul. 2013. Vol. 18. P. 973.
- Klinshov V.V., Nekorkin V.I. Event-based simulation of networks with pulse delayed coupling // Chaos. 2017. Vol. 27. P. 101105.
- Arenas A., D´ıaz-Guilera A., Kurths J., Moreno Y., Zhou C. Synchronization in complex networks // Physics Reports. 2008. Vol. 469, no. 3. P. 93–153.
- Pikovsky A., Kurths J., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences, volume 12. Cambridge university press, 2003.
- Winfree A.T. Biological rhythms and the behavior of populations of coupled oscillators // Journal of Theoretical Biology. 1967. Vol. 16. P. 15–42.
- Kuramoto Y. Chemical Oscillations, Waves, and Turbulence, volume 19. Springer-Verlag (Berlin and New York), 1984.
- Mirollo R.E., Strogatz S.H. Synchronization of pulse-coupled biological oscillators // SIAM J. Appl. Math. 1990. Vol. 50, no. 6. P. 1645–1662.
- Bottani S. Pulse-coupled relaxation oscillators: From biological synchronization to self-organized criticality // Physical Review Letters 1995. Vol. 74, no. 21. P. 4189–4192.
- Corral A., P ´ erez C.J., D ´ ´ıaz-Guilera A., Arenas A. Synchronization in a lattice model of pulsecoupled oscillators // Physical Review Letters. 1995. Vol. 75, no. 20. P. 3697.
- Gerstner W., Van Hemmen J.L. Coherence and incoherence in a globally coupled ensemble of pulse-emitting units // Physical Review Letters. 1993. Vol. 71, no. 3. P. 312–315.
- Gerstner W., Kempter R., van Hemmen J.L., Wagner H. A neuronal learning rule for submillisecond temporal coding // Nature. 1996. Vol. 383. P. 76–78.
- Клиньшов В.В., Некоркин В.И. Синхронизация автоколебательных сетей с запаздывающими связями // Усп. физ. наук. 2013. T. 183. C. 323.
- Ernst U., Pawelzik K., Geisel T. Synchronization induced by temporal delays in pulse-coupled oscillators // Physical Review Letters. 1995. Vol. 74, no. 9. P. 1570–1573.
- Ernst U., Pawelzik K., Geisel T. Delay-induced multistable synchronization of biological oscillators // Physical Review E. 1998. Vol. 57, no. 2. P. 2150–2162.
- Timme M., Wolf F., Geisel T. Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators // Phys. Rev. Lett. 2002. Vol. 89, no. 25. P. 258701.
- Timme M., Geisel T., Wolf F. Speed of synchronization in complex networks of neural oscillators: Analytic results based on Random Matrix Theory // Chaos. 2006. Vol. 16. P. 15108.
- Golomb D., Hansel D. The number of synaptic inputs and the synchrony of large, sparse neuronal networks // Neural Computation. 2000. Vol. 12, no. 5. P. 1095–1139.
- Borgers C., Kopell N. ¨ Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity // Neural Computation. 2003. Vol. 15, no. 3. P. 509–38.
- Hopfield J.J., Herz A.V. Rapid local synchronization of action potentials: Toward computation with coupled integrate-and-fire neurons // Proceedings of the National Academy of Sciences. 1995. Vol. 92, no. 15. P. 6655–6662.
- Campbell S.R., Wang D.L., Jayaprakash C. Synchrony and desynchrony in integrate-and-fire oscillators // Neural computation. 1999. Vol. 11, no. 7. P. 1595–1619.
- Klinshov V., Nekorkin V. Activity clusters in dynamical model of the working memory system // Network: Computation in Neural Systems. 2008. Vol. 19, no. 2. P. 119–135.
- Terman D., Wang D. Global competition and local cooperation in a network of neural oscillators // Physica D: Nonlinear Phenomena. 1995. Vol. 81, no. 1–2. P. 148–176.
- Wang D., Terman D. Locally excitatory globally inhibitory oscillator networks // IEEE Transactions on Neural Networks. 1995. Vol. 6, no. 1. P. 283–286.
- Canavier C.C., Achuthan S. Pulse coupled oscillators and the phase resetting curve // Mathematical Biosciences. 2010. Vol. 226, no. 2. P. 77–96.
- Achuthan S., Canavier C.C. Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators // The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2009. Vol. 29, no. 16. P. 5218–5233.
- Lucken L., Yanchuk S. ¨ Two-cluster bifurcations in systems of globally pulse-coupled oscillators // Physica D: Nonlinear Phenomena. 2012. Vol. 241. P. 350–359.
- Klinshov V., Lucken L., Yanchuk S. ¨ Desynchronization by phase slip patterns in networks of pulse-coupled oscillators with delays // The European Physical Journal Special Topics. 2018. Vol. 227, no. 10–11. P. 1117–1128.
- Abbott L.F., van Vreeswijk C. Asynchronous states in networks of pulse-coupled oscillators // Physical Review E. 1993. Vol. 48, no. 2. P. 1483–1490.
- Golomb D., Hansel D., Shraiman B., Sompolinsky H. Clustering in globally coupled phase oscillators // Physical Review A. 1992. Vol. 45, no. 6. P. 3516–3530.
- Matthews P.C., Mirollo R.E., Strogatz S.H. Dynamics of a large system of coupled nonlinear oscillators // Physica D: Nonlinear Phenomena. 1991. Vol. 52, no. 2–3. P. 293–331.
- Treves A. Mean-field analysis of neuronal spike dynamics // Network: Computation in Neural Systems. 1993. Vol. 4, no. 3. P. 259–284.
- Gerstner W. Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking // Neural Computation. 2000. Vol. 12. P. 43–89.
- Hansel D., Mato G. Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons // Neural Computation. 2003. Vol. 15. P. 1–56.
- Zillmer R., Livi R., Politi A., Torcini A. Desynchronization in diluted neural networks // Physical Review E. 2006. Vol. 74. P. 36203.
- Amit D.J., Brunel N. Dynamics of a recurrent network of spiking neurons before and following learning // Network: Computation in Neural Systems. 1997. Vol. 8, no. 4. P. 373–404.
- Amit D.J., Brunel N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex // Cerebral cortex (New York, NY: 1991). 1997. Vol. 7, no. 3. P. 237–252.
- Brunel N., Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates // Neural Computation. 1999. Vol. 11, no. 7. P. 1621–1671.
- Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons // Journal of Computational Neuroscience. 2000. Vol. 8, no. 3. P. 183–208.
- Parga N., Abbott L.F. Network model of spontaneous activity exhibiting synchronous transitions between up and down states // Frontiers in Neuroscience. 2007. Vol. 1. P. 4.
- Renart A., De La Rocha J., Bartho P., Hollender L., Parga N., Reyes A., Harris K.D. The asynchronous state in cortical circuits // Science. 2010. Vol. 327, no. 5965. P. 587–590.
- Potjans T.C., Diesmann M. The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking network model // Cerebral Cortex. 2014. Vol. 24, no. 3. P. 785–806.
- Borges F.S., Protachevicz P.R., Pena R.F.O., Lameu E.L., Higa G.S.V., Kihara A.H., Matias F.S., Antonopoulos C.G., de Pasquale R., Roque A.C., others. Self-sustained activity of low firing rate in balanced networks // Physica A: Statistical Mechanics and its Applications. 2020. Vol. 537. P. 122671.
- Vogels T.P., Abbott L.F. Signal propagation and logic gating in networks of integrate-and-fire neurons // J. Neurosci. 2005. Vol. 25. P. 10786–10795.
- Teramae J.-n., Tsubo Y., Fukai T. Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links // Scientific Reports. 2012. Vol. 2. P. 485.
- Song S., Sjostr ¨ om P.J., Reigl M., Nelson S., Chklovskii D.B. ¨ Highly nonrandom features of synaptic connectivity in local cortical circuits // PLoS Biology. 2005. Vol. 3, no. 3. e68.
- Kriener B., Enger H., Tetzlaff T., Plesser H.E., Gewaltig M.-O., Einevoll G.T. Dynamics of selfsustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses // Frontiers in Computational Neuroscience. 2014. Vol. 8. P. 136.
- Ostojic S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons // Nature Neuroscience. 2014. Vol. 17, no. 4. P. 594–600.
- van Vreeswijk C. Partial synchronization in populations of pulse-coupled oscillators // Physical Review E. 1996. Vol. 54, no. 5. P. 5522–5537.
- Wang X.-J., Buzsaki G. ´ Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model // Journal of Neuroscience. 1996. Vol. 16, no. 20. P. 6402–6413.
- Brunel N., Wang X.-J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance // Journal of Neurophysiology. 2003. Vol. 90, no. 1. P. 415–430.
- Kumar A., Schrader S., Aertsen A., Rotter S. The high-conductance state of cortical networks // Neural computation. 2008. Vol. 20, no. 1. P. 1–43.
- Politi A., Ullner E., Torcini A. Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons // The European Physical Journal. Special Topics. 2018. Vol. 1204. P. 1185–1204.
- Ullner E., Politi A., Torcini A. Ubiquity of collective irregular dynamics in balanced networks of spiking neurons // Chaos. 2018. Vol. 28, no. 8. P. 1–6.
- Luccioli S., Politi A. Irregular collective behavior of heterogeneous neural networks // Physical Review Letters. 2010. Vol. 105, no. 15. P. 158104.
- Ullner E., Politi A. Self-sustained irregular activity in an ensemble of neural oscillators // Physical Review X. 2016. Vol. 6. P. 011015.
- Litwin-Kumar A., Doiron B. Slow dynamics and high variability in balanced cortical networks with clustered connections // Nature Neuroscience. 2012. Vol. 15, no. 11. P. 1498–505.
- Wang S.-J., Hilgetag C., Zhou C. Sustained activity in hierarchical modular neural networks: Self-organized criticality and oscillations // Frontiers in Computational Neuroscience. 2011. Vol. 5, no. 30.
- Klinshov V.V., Teramae J.-n.N., Nekorkin V.I., Fukai T. Dense neuron clustering explains connectivity statistics in cortical microcircuits // PloS one. 2014. Vol. 9, no. 4. e94292.
- Klinshov V., Franovic I. ´ Mean field dynamics of a random neural network with noise // Physical Review E. 2015. Vol. 92, no. 6. 062813.
- Wilson H.R., Cowan J.D. Excitatory and inhibitory interactions in localized populations of model neurons // Biophysical Journal. 1972. Vol. 12, no. 1. P. 1–24.
- Wimmer K., Nykamp D.Q., Constantinidis C., Compte A. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory // Nature Neuroscience. 2014. Vol. 17, no. 3. P. 431.
- Montbrio E., Paz ´ o D., Roxin A. ´ Macroscopic description for networks of spiking neurons // Physical Review X. 2015. Vol. 5. 021028.
- Ott E., Antonsen T.M. Long time evolution of phase oscillator systems // Chaos. 2009. Vol. 19, no. 2. 23117.
- Ratas I., Pyragas K. Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons // Physical Review E. 2016. Vol. 94, no. 3. 32215.
- Ratas I., Pyragas K. Symmetry breaking in two interacting populations of quadratic integrateand-fire neurons // Physical Review E. 2017. Vol. 96, no. 4. P. 42212.
- di Volo M., Torcini A. Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses // Physical Review Letters. 2018. Vol. 121, no. 12. 128301.
- Naud R., Gerstner W. Coding and decoding with adapting neurons: A population approach to the peri-stimulus time histogram // PLoS Computational Biology. 2012. Vol. 8, no. 10. e1002711.
- Chizhov A.V., Graham L.J. Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons // Physical Review E-Statistical, Nonlinear, and Soft Matter Physics. 2007. Vol. 75. 011924.
- Chizhov A.V., Graham L.J. Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method // Physical Review E. 2008. Vol. 77, no. 1. P. 11910.
- Chizhov A.V. Conductance-based refractory density approach: Comparison with experimental data and generalization to lognormal distribution of input current // Biological Cybernetics. 2017. Vol. 111, no. 5–6. P. 353–364.
- Schwalger T., Deger M., Gerstner W. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size // PLoS Computational Biology. 2017. Vol. 13, no. 4. P. 1–63.
- Chizhov A.V. Conductance-based refractory density model of primary visual cortex // Journal of Computational Neuroscience. 2014. Vol. 36, no. 2. P. 297–319.
- Chizhov A.V., Amakhin D.V., Zaitsev A.V. Spatial propagation of interictal discharges along the cortex // Biochemical and Biophysical Research Communications. 2019. Vol. 508, no. 4. P. 1245–1251.
- Pietras B., Gallice N., Gerstner W., Schwalger T. Spectral decomposition of refractory density equation for neural population dynamics. In Bernstein Conference, 2019.
- Singer W. Synchronization of cortical activity and its putative role in information processing and learning // Annual Review of Physiology. 1993. Vol. 55, no. 1. P. 349–374.
- Traub R.D., Wong R.K. Cellular mechanism of neuronal synchronization in epilepsy // Science. 1982. Vol. 216, no. 4547. P. 745–747.
- Uhlhaas P.J., Singer W. Abnormal neural oscillations and synchrony in schizophrenia // Nature Reviews Neuroscience. 2010. Vol. 11, no. 2. P. 100–113.
- Hansel D., Sompolinsky H. Synchronization and computation in a chaotic neural network // Phys. Rev. Lett. 1992. Vol. 68. P. 718–721. pmid:10045972
- Skarda C.A., Freeman W.J. Rate models for conductance-based cortical neuronal networks // Behav Brain Sci. 1987. Vol. 10. P. 161–195.
- Sussillo D., Abbott L.F. Generating coherent patterns of activity from chaotic neural networks // Neuron. 2009. Vol. 63. P. 544–557. pmid:19709635
- Toyoizumi T., Abbott L.F. Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime // Physical Review E. 2011. Vol. 84. 051908.
- Barak O., Sussillo D., Romo R., Tsodyks M., Abbott L.F. From fixed points to chaos: Three models of delayed discrimination // Prog. Neurobiol. 2013. Vol. 103. P. 214–222. pmid:23438479
- Schwalger T., Chizhov A.V. Mind the last spike—firing rate models for mesoscopic populations of spiking neurons // Current Opinion in Neurobiology. 2019. Vol. 58. P. 155–66.
- Coombes S., Byrne A.´ Next generation neural mass models. In Nonlinear Dynamics in Computational Neuroscience. Springer, Cham. P. 1–16.
- 1920 просмотров