Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Статья имеет ранний доступ!

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 0)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
517.929.7
EDN: 

Об асимптотической устойчивости по выходу для систем с запаздыванием

Авторы: 
Седова Наталья Олеговна, Ульяновский государственный университет
Аннотация: 

Цель настоящего исследования — получить достаточные условия асимптотической устойчивости по выходу для нелинейных неавтономных систем с запаздыванием, описываемых уравнениями с обыкновенными производными. Отдельно рассматривается равномерная и неравномерная асимптотическая устойчивость по выходу, — в отличие от классической асимптотической устойчивости по Ляпунову, эти свойства в общем случае не равносильны даже для автономной системы.

Методы. Исследуются возможности прямого метода Ляпунова для формулировки достаточных условий асимптотической устойчивости по выходу для нелинейных систем с запаздыванием. На примере наиболее хорошо изученной задачи по
части переменных анализируются известные результаты об асимптотической устойчивости по выходу для систем с запаздыванием в терминах функций и функционалов Ляпунова, обсуждаются отличия требований к вспомогательным конструкциям по сравнению с достаточными условиями классической асимптотической устойчивости, а также условия, обеспечивающие равномерность сходимости.

Результаты. Представлены новые результаты об асимптотической устойчивости и равномерной асимптотической устойчивости по выходу для неавтономной системы с запаздыванием в терминах функции Ляпунова–Разумихина, от которой не требуется знакоопределенность по выходу.

Заключение. Сформулированы новые достаточные условия асимптотической устойчивости по выходу для нелинейных неавтономных систем с запаздыванием. В терминах функций Ляпунова–Разумихина получены условия простой и равномерной асимптотической устойчивости по выходу. При этом требования к этим функциям и к правой части системы менее строгие по сравнению с известными подобными результатами, что расширяет возможности применения метода к исследованию конкретных систем.
 

Список источников: 

-

Поступила в редакцию: 
22.09.2025
Принята к публикации: 
25.12.2025
Опубликована онлайн: 
27.12.2025