Известия высших учебных заведений
ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Бифуркации в динамических системах. Детерминированный хаос. Квантовый хаос.

Синхронизация связанных генераторов квазипериодических колебаний при разрушении инвариантной кривой

Цель настоящего исследования – описать полную картину синхронизации двух связанных генераторов квазипериодических колебаний, классифицировать различные типы синхронизации, изучить особенности возникновения и разрушения многочастотных квазипериодических колебаний. Методы. Объектом исследования являются системы обыкновенных дифференциальных уравнений различной размерности. В работе используется метод Рунге– Кутты 4-го порядка для решения системы дифференциальных уравнений.

Экспериментальные исследования хаотической динамики рядом с Теоретиком

Целью данной работы является составление обзора по работам, в которых проводились экспериментальные исследования закономерностей хаотической динамики, выявленные в теоретически в работах С.П. Кузнецова. Методы. В основе используемых методов исследования в первую очередь лежит построение экспериментальных схем, которые наиболее близко соответствуют математическим моделям, предложенным и теоретически и численно исследованным С.П. Кузнецовым.

Синхронизация осцилляторов с гиперболическими хаотическими фазами

Тема и цель. Синхронизация в популяциях связанных осцилляторов может быть охарактеризована параметрами порядка, описывающими коллективный порядок в ансамблях. Зависимость параметра порядка от коэффициентов связи хорошо известна для связанных периодических осцилляторов. Целью данного исследования является обобщение этого анализа на ансамбли осцилляторов с хаотическими фазами, а именно, с фазами, распределёнными на гиперболическом аттракторе. Модели и методы. В работе исследуются две модели.

Теоретические модели физических систем с грубым хаосом

Цель данного обзора состоит в том, чтобы в едином ключе изложить последние результаты по математическому моделированию грубого гиперболического хаоса в системах различной физической природы. Основные методы исследования состоят в численном решении систем дифференциальных уравнений и уравнений в частных производных, численном извлечении фазы колебательных процессов или пространственных структур, вычислении показателей Ляпунова и исследовании взаимного расположения устойчивых и неустойчивых многообразий хаотических траекторий, вычислении гауссовой кривизны поверхностей.

О методах проверки псевдогиперболичности странных аттракторов

Тема работы – странные аттракторы многомерных отображений и потоков. Странные аттракторы можно разделить на две группы: настоящие аттракторы, которые сохраняют свою хаотичность при малых возмущениях, и квазиаттракторы (по Афраймовичу–Шильникову), внутри которых при малых возмущениях могут возникать устойчивые периодические траектории. Основная цель настоящей работы – это построение эффективных критериев, позволяющих различать такие аттракторы, а также проверка этих критериев с помощью численных экспериментов.

О методах проверки псевдогиперболичности странных аттракторов

Тема работы -- странные аттракторы многомерных отображений и потоков. Странные аттракторы можно разделить на две группы: настоящие аттракторы, которые сохраняют свою хаотичность при малых возмущениях, и квазиаттракторы (по Афраймовичу-Шильникову), в которых при малых возмущениях могут возникать устойчивые периодические траектории. Основная цель настоящей работы -- это построение эффективных критериев, позволяющих различать такие аттракторы, а также проверка этих критериев с помощью численных экспериментов.

Критерий существования решения уравнений движения идеального газа для заданной винтовой скорости

Цель исследования состоит в получении критерия существования стационарного решения полной системы уравнений, описывающих течение идеального совершенного газа при заданном несоленоидальном винтовом поле скорости. Условия такого критерия должны содержать только компоненты этой скорости и их производные. Выполнение условий должно быть необходимо и достаточно для существования таких полей плотности и давления, которые вместе с рассматриваемой скоростью удовлетворяют полной системе уравнений. Методы.

Численное исследование динамической системы, порождаемой CABC векторным полем

Цель настоящего исследования состоит в построении винтового векторного поля и анализе порождаемой им динамической системы. Классическим примером такого поля является ABC (Arnold–Beltrami–Childress, Арнольд– Бельтрами–Чилдресс) течение, являющееся стационарным решением уравнений динамики идеальной несжимаемой жидкости. В статье численно изучается структура фазового пространства динамической системы, определяемой построенным векторным полем при различных предположениях. Методы.

Синхронизация связанных генераторов квазипериодических колебаний при разрушении инвариантной кривой

\textbf{Цель} настоящего исследования – описать полную картину синхронизации простейшего ансамбля генераторов квазипериодических колебаний, классифицировать различные типы синхронизации, изучить особенности возникновения и разрушения многочастотных квазипериодических колебаний.

Теоретические модели физических систем с грубым хаосом

Цель данного обзора состоит в том, чтобы в едином ключе изложить последние результаты по математическому моделированию грубого гиперболического хаоса в системах различной физической природы. Основные Методы исследования состоят в численном решении систем дифференциальных уравнений и уравнений в частных производных, численном извлечении фазы колебательных процессов или пространственных структур, вычислении показателей Ляпунова и исследовании взаимного расположения устойчивых и неустойчивых многообразий хаотических траекторий, вычислении гауссовой кривизны поверхностей.

Страницы