Известия высших учебных заведений
ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Бифуркации в динамических системах. Детерминированный хаос. Квантовый хаос.

Метод выделения характерных фаз поведения в системах со сложной топологией аттрактора, находящихся вблизи границы обобщенной синхронизации

Целью работы является разработка универсального метода выделения характерных фаз поведения систем со сложной топологией аттрактора, находящихся в режиме перемежающейся обобщенной синхронизации. Метод основан на анализе расположения изображающих точек на аттракторах взаимодействующих систем, связанных однонаправленно или взаимно.

Моделирование градиентно-подобных потоков на n-сфере

Общей идеей качественного изучения динамических систем, со времён работ А. Андронова, Е. Леонтович, А. Майера, является возможность описания динамики системы комбинаторным инвариантом. Так, например, М.Пейшото доказал структурно устойчивые потоки на плоскости определяются единственным образом, с точностью до топологической эквивалентности, классом изоморфных ориентированных графов. Многомерные структурно устойчивые потоки не позволяют ввести их классификацию в рамках общего комбинаторного инварианта.

Автогенератор грубого гиперболического хаоса

Тема и цель исследования. Цель состоит в разработке автогенератора грубого хаоса, у которого на аттракторе реализуется динамика, близкая к потоку Аносова на многообразии отрицательной кривизны, в построении и анализе математической модели, а также проведении схемотехнического моделирования динамики с помощью программного продукта Multisim.

Нелинейная двумерная динамика взаимодействующих раковых клеток в условиях экстраклеточного информационного поля

Цель настоящей работы – теоретически исследовать влияние экстраклеточного информационного поля на антипараллельную и параллельную подвижность взаимодействующих раковых клеток в зависимости от внешних параметров экстраклеточной матрицы и параметров профиля информационного метаболитического потенциала в динамике рисков формирования и развития раковой опухоли.

Автогенератор грубого гиперболического хаоса

Тема и цель исследования. Цель состоит в разработке автогенератора грубого хаоса, у которого на аттракторе реализуется динамика, близкая к потоку Аносова на многообразии отрицательной кривизны, в построении и анализе математической модели, а также проведении схемотехнического моделирования динамики с помощью программного продукта Multisim. Исследуемые модели. Сформулирована математическая модель, описываемая системой обыкновенных дифференциальных уравнений девятого порядка с алгебраической нелинейностью, и предложена схемотехническая реализация генератора хаоса.

Modeling of Gradient-like Flows on n-sphere

The general idea of a qualitative study of dynamic systems, going back to the works by A. Andronov, E. Leontovich, A. Mayer is the ability to describe the dynamics of a system using combinatorial invariants. A brilliant example of the implementation of this approach is the topological equivalence of flows on surfaces obtained by M. Peixoto. He proved that structurally stable flows on surfaces are uniquely determined, up to topological equivalence, by the isomorphic class of a directed graph.