Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Образец для цитирования:

Кузнецов А. П., Станкевич Н. В., Тюрюкина Л. В. Связанные осцилляторы ван дер поля и ван дер поля–дуффинга: фазовая динамика и компьютерное моделирование //Изв. вузов. ПНД. 2008. Т. 16, вып. 4. С. 101-136. DOI: https://doi.org/10.18500/0869-6632-2008-16-4-101-136

Язык публикации: 
русский
Рубрика: 

Связанные осцилляторы ван дер поля и ван дер поля–дуффинга: фазовая динамика и компьютерное моделирование

Авторы: 
Кузнецов Александр Петрович, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Станкевич Наталия Владимировна, Саратовский государственный технический университет имени Гагарина Ю.А. (СГТУ)
Тюрюкина Людмила Владимировна, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Аннотация: 

Обсуждается синхронизация в системе связанных неидентичных, неизохронных осцилляторов ван дер Поля с диссипативной и инерционной связью. Получено и исследовано обобщенное уравнение Адлера в присутствии всех перечисленных факторов. Выявлены характерные симметрии уравнения, приводящие к эквивалентности некоторых физических факторов. Проведено численное исследование устройства пространства параметров исходной дифференциальной системы методом построения карт динамических режимов. Результаты двух подходов сопоставляются и обсуждаются.

Ключевые слова: 
DOI: 
10.18500/0869-6632-2008-16-4-101-136
Библиографический список: 

1. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация, фундаментальное нелинейное явление. М.: Техносфера, 2003, 508 с. 2. Aronson D.G., Ermentrout G.B., Kopell N. Amplitude response of coupled oscillators // Physica D. 1990. Vol. 41. P. 403. 3. Rand R.H., Holmes P.J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1980. Vol. 15. P. 387. 4. Storti D.W., Rand R.H. Dynamics of two strongly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1982. Vol. 17, No 3. P. 143. 5. Chakraborty T., Rand R.H. The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1988. Vol. 23, No 5/6. P. 369. 6. Poliashenko M., McKay S.R., Smith C.W. Chaos and nonisochronism in weakly coupled nonlinear oscillators // Phys. Rev. A. 1991. Vol. 44. P 3452. 7. Poliashenko M., McKay S.R., Smith C.W. Hysteresis of synchronous – asynchronous regimes in a system of two coupled oscillators // Phys. Rev. A. 1991. Vol. 43. P. 5638. 8. Pastor I., Perez-Garcia V.M., Encinas-Sanz F., Guerra J.M. Ordered and chaotic behavior of two coupled van der Pol oscillators // Phys. Rev. E. 1993. Vol. 48. P. 171. 9. Camacho E., Rand R.H., Howland H. Dynamics of two van der Pol oscillators coupled via a bath // Int. J. of Solids and Structures. 2004. Vol. 41. P. 2133. 10. Кузнецов А.П., Паксютов В.И. О динамике двух связанных осцилляторов ван дер Поля–Дуффинга с диссипативной связью // Изв. вузов. Прикладная нелинейная динамика. 2003. Т. 11, No 6. С. 48. 11. Кузнецов А.П., Паксютов В.И. Особенности устройства пространства параметров двух неидентичных связанных осцилляторов ван дер Поля–Дуффинга // Изв. вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 4. C. 3. 12. Ivanchenko M.V., Osipov G.V., Shalfeev V.D., Kurths J. Synchronization of two nonscalar-coupled limit-cycle oscillators // Physica D. 2004. Vol. 189, No 1-2. P. 8. 13. Постон Т., Стюарт И. Теория катастроф и ее приложения. М.: Мир, 1980. 14. Арнольд В.И. Теория катастроф. М.: Наука, 1990. 128 с. 15. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. Сер. Современная теория колебаний и волн. 2-е изд. М.: Физматлит, 2006. 16. Кузнецов С.П. Динамический хаос. Сер. Современная теория колебаний и волн. 2-е изд. М.: Физматлит, 2006. 356 с. 17. Ван Д., Ли Ч., Чоу Ш.-Н. Нормальные формы и бифуркации векторных полей на плоскости. М.: МЦНМО, 2005. 415 с. 18. Солитоны / Под ред. Р. Буфала и Ф. Кодри. М.: Мир, 1983. 408 с. 19. Гукенхеймер Дж., Холмс Ф. Нелинейные колебания, динамические системы и бифуркации векторных полей.; Ижевск; Москва: РХД, 2002. 560 с. 20. Mettin R., Parlitz U., Lauterborn W. Bifurcation structure of the driven van der Pol oscillator // International Journal of Bifurcation and Chaos. 1993. Vol. 3, No 6. 21. Арнольд В.И. Эволюция волновых фронтов и эквивариантная лемма Морса // В кн.: В.И. Арнольд. Избранное–60. М.: Фазис, 1997. C. 289. 22. Кузнецов А.П., Паксютов В.И., Ю.П. Роман. Особенности синхронизации в системе неидентичных связанных осцилляторов ван дер Поля и ван дер Поля–Дуффинга. Широкополосная синхронизация // Изв. вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 4. C. 3. 23. Кузнецов А.П, Кузнецов С.П. Критическая динамика решеток связанных отображений у порога хаоса (обзор) // Изв. вузов. Радиофизика. 1991. Т. 34, No 10–12. C. 1079. 24. Anishchenko V.S. et al. Nonlinear dynamics of chaotic and stochastic systems. Springer, 2001. 374 p.

Краткое содержание: 
Полный текст в формате PDF: