ВЛИЯНИЕ ФЛУКТУАЦИЙ НА ЭВОЛЮЦИЮ ТРЕХМЕРНОГО ТОРА В НЕАВТОНОМНОЙ СИСТЕМЕ


Образец для цитирования:

Попова Е. С. ВЛИЯНИЕ ФЛУКТУАЦИЙ НА ЭВОЛЮЦИЮ ТРЕХМЕРНОГО ТОРА В НЕАВТОНОМНОЙ СИСТЕМЕ // Известия вузов. Прикладная нелинейная динамика.2012 Т. 20, вып. 2. С. 98-103. DOI: 10.18500/0869-6632-2012-20-2-98-103​


На примере неавтономной системы с квазипериодическим воздействием исследуется переход к хаосу через разрушение трехмерного тора. Проводится анализ влияния аддитивного шума и флуктуаций частоты воздействия на устойчивость трехмерного тора. Показано, что при воздействии аддитивного шума и флуктуаций частоты воздействия ляпуновский показатель остается отрицательным. Последнее позволяет сделать вывод, что в отличие от автономных систем в данной модели трехмерный тор является структурно-устойчивым.

DOI: 
10.18500/0869-6632-2012-20-2-98-103​
Литература

1. Рюэль Д., Такенс Ф. Странные аттракторы. М.: Мир, 1981. С. 117.

2. Newhouse S., Ruelle D., Takens F. // Commun. Math. Phys. 1978. Vol. 64. P. 35.

3. Лоскутов А.Ю., Михайлов А.С. Основы теории сложных систем. М.;Ижевск: Институт компьютерных исследований, 2007. 620 с.

4. Grebogi C., Ott E., Yorke J.A. // Phys. Rev. Lett. 1983. Vol. 51. P. 339.

5. Grebogi C., Ott E., Yorke J.A.// Physica D. 1985. Vol. 15. P. 354.

6. Grebogi C., Ott E., Pelikan S., Yorke J.A. // Physica D. 1984. Vol. 13. P. 261.

7. Tavakol R.K., Tworkowski A.S. // Phys. Lett. A. 1984. Vol. 100. P. 65.

8. Tavakol R.K., Tworkowski A.S. // Phys. Lett. A. 1984. Vol. 100. P. 273.

9. Хованов И.А., Хованова Н.А., Анищенко В.С., Мак-Клинток П.В.Е. Чувствительность к начальным условиям и ляпуновский показатель квазипериодической системы // Журнал технической физики. 2000. Т. 70, вып. 5. С. 112.

10. Walden R.W., KolodnerP., Ressner A., Surko C.M. // Phys. Rev. Lett. 1984. Vol. 53. P. 242.

11. Kim S.-H. and Ostlund S. // Phys. Rev. A. 1986. Vol. 34, No 4. P. 3426.

12. Безручко Б.П., Кузнецов С.П., Селезнев Е.П., Пиковский А.С., Фойдель У. О динамике нелинейных систем под внешним квазипериодическим воздействием вблизи точки окончания линии бифуркации удвоения тора // Изв. вузов. ПНД. 1997. Т. 5, No 6. С. 3.

13. Bezruchko B.P., Kuznetsov S.P., Seleznev E.P. Experimental observation of dynamics near the torus-doubling terminal critical point // Phys. Rev. E. 2000. Vol. 62, No 6. P. 7828.

14. Khovanov I.A., Khovanova N.A., McClintock P.V.E., Anishchenko V.S. The effect of noise on strange nonchaotic attractors// Phys. Letters A. 2000. Vol. 268. P. 315.

 

Статус: 
одобрено к публикации
Краткое содержание (PDF): 

BibTeX

@article{ Popova-IzvVUZ_AND-20-2-98,
author = {Елена Сергеевна Попова },
title = {ВЛИЯНИЕ ФЛУКТУАЦИЙ НА ЭВОЛЮЦИЮ ТРЕХМЕРНОГО ТОРА В НЕАВТОНОМНОЙ СИСТЕМЕ},
year = {2012},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {20},number = {2},
url = {http://andjournal.sgu.ru/ru/articles/vliyanie-fluktuaciy-na-evolyuciyu-trehmernogo-tora-v-neavtonomnoy-sisteme},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-2-98-103​},pages = {98--103},issn = {0869-6632},
keywords = {Трехмерный тор,квазипериодическое воздействие,влияние шума,показатель Ляпунова,странный нехаотический аттрактор.},
abstract = {На примере неавтономной системы с квазипериодическим воздействием исследуется переход к хаосу через разрушение трехмерного тора. Проводится анализ влияния аддитивного шума и флуктуаций частоты воздействия на устойчивость трехмерного тора. Показано, что при воздействии аддитивного шума и флуктуаций частоты воздействия ляпуновский показатель остается отрицательным. Последнее позволяет сделать вывод, что в отличие от автономных систем в данной модели трехмерный тор является структурно-устойчивым. }}