For citation:
Astakhov V. V., Shabunin A. V., Stalmahov P. A. Antiphase synchronization and multistability formation in symmetrically coupled bistable systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 6, pp. 112-123. DOI: 10.18500/0869-6632-2006-14-6-112-123
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 157)
Language:
Russian
Heading:
Article type:
Article
UDC:
537.86
Antiphase synchronization and multistability formation in symmetrically coupled bistable systems
Autors:
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Shabunin Aleksej Vladimirovich, Saratov State University
Stalmahov Petr Andreevich, Saratov State University
Abstract:
Bifurcational mechanizms of multistability formation on base of regimes of antiphase synchronization in diffusivelly coupled cubic maps are considered. Bifurcations of periodic orbits inside symmetric invariant subspace, which containes attractors of synchronous oscillations, are studied.
Key words:
Reference:
- Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems. Progress of theoretical physics. 1983;69(1):32–47. DOI: 10.1143/PTP.69.32.
- Pikovsky AS. On the interaction of strange attractors. Preprint No. 79, Gorky: IPF AS of the USSR; 1983. 21 p. (In Russian).
- Kuznetsov SP. Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophys Quantum Electron. 1985;28(8):681–695. DOI: 10.1007/BF01035195.
- Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillation in dissipative systems. Radiophys Quantum Electron. 1986;29(9):795–803. DOI: 10.1007/BF01034476.
- Astakhov VV, Bezruchko BP, Ponomarenko VI, Seleznev EP. Quasi-uniform stochastic movements and their destruction in the system of connected nonlinear oscillators. Radiophys Quantum Electron. 1988;31(10):627–630.
- Astakhov V, Shabunin A, Uhm W, Kim S. Multistability formation and synchronization loss in coupled Hénon maps: two sides of the single bifurcational mechanism. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;63(5):056212. DOI: 10.1103/PhysRevE.63.056212.
- Cao L-Y, Lai Y-C. Antiphase synchronism in chaotic systems. Phys. Rev. E. 1998;58(1):382–386. DOI: 10.1103/PHYSREVE.58.382.
- Astakhov V, Shabunin A, Stalmakhov P. Multistability, in-phase and anti-phase chaos synchronisation in period-doubling systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(3):63–79.
- Astakhov VV, Bezruchko BP, Gulyaev YuV, Seleznev YP. Multistable States Of Dissipatively-Connected Feigenbaum System. Pisma v Zhurnal Tekhnicheskoi Fiziki. 1989;15(3):60–65.
- Astakhov VV, Bezruchko BP, Ponomarenko VI, Seleznev EP. Multi-stability in the system of radio-technical generators with capacitive communication Soviet Journal of Communications Technology and Electronics. 1991;36(11):2167–2170.
- Astakhov VV, Shabunin AV, Anishchenko VS. Spectral patterns in the formation of multi-stability in connected generators with doubling of the period. Soviet Journal of Communications Technology and Electronics. 1997;42(8):974.
Received:
07.07.2006
Accepted:
07.07.2006
Published:
29.12.2006
Journal issue:
Short text (in English):
(downloads: 81)
- 1852 reads