ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Astakhov V. V., Koblyanskiy S. A., Shabunin A. V. Bifurcation analysis of synchronization and amplitude death in coupled generators with inertial nonlinearity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 2, pp. 79-97. DOI: 10.18500/0869-6632-2010-18-2-79-97

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 242)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Bifurcation analysis of synchronization and amplitude death in coupled generators with inertial nonlinearity

Autors: 
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Koblyanskiy Sergey Andreevich, Saratov State University
Shabunin Aleksej Vladimirovich, Saratov State University
Abstract: 

The results of analysis of bifurcation transitions to synchronous regimes and amplitude death are discussed for two dissipatively coupled generators with inertial nonlinearity. It was determined that there are two types of synchronization regions in this system: first consists of both frequency lock and suppression areas, second has only frequency lock area. At the weakly non-identical excitement parameters the first-type synchronization regions merge together. It makes possible the non-bifurcational way of transition between synchronization regions with different rotation numbers.

Reference: 
  1. Blekhman II. Synchronization of dynamic systems. Moscow: Nauka; 1971. 896 p. (in Russian).
  2. Landa PS. Self-oscillations in systems with finite degrees of freedom. Moscow: Nauka; 1980. (in Russian).
  3. Rabinovich MI, Trubetskov DI. Introduction to the Theory of Vibrations and Waves. Moscow: Nauka; 1984. (in Russian).
  4. Pikovsky A, Rosenblum M, Kurts Yu. Synchronization: A fundamental nonlinear phenomenon. Moscow: Tehnosphera; 2003. 493 p.
  5. Balanov A, Janson N, Postnov D, Sosnovtseva O. Synchronization. From Simple to Complex. Berlin, Heidelberg: Springer-Verlag; 2009.
  6. Aronson DG, Ermentrout GB, Kopell N. Amplitude response of coupled oscillators. Physica D. 1990;41:403–449. DOI: 10.1016/0167-2789(90)90007-C.
  7. Mayer AG. On the theory of coupled vibrations of two self-excited generators. Scientific records of the Gorky State University. 1935;2:3–12 (in Russian).
  8. Rand RH, Holmes PJ. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Non-Linear Mech. 1980;15:387–399. DOI: 10.1016/0020-7462(80)90024-4.
  9. Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J. Synchronization of two non-scalar-coupled limit-cycle oscillators. Physica D. 2004;189(1–2):8–30. DOI: 10.1016/j.physd.2003.09.035.
  10. Bar-Eli K. On the stability of coupled chemical oscillators. Physica D. 1985;14(2):242-–252. DOI: 10.1016/0167-2789(85)90182-4.
  11. Taylor MA, Kevrekidis IG. Some common dynamic features of coupled reacting systems. Physica D. 1991;51:274–292. DOI: 10.1016/0167-2789(91)90239-6.
  12. Astakhov VV, Koblyansky SA, Vadivasova TE, Anishchenko VS. Bifurcation analysis of two dissipatively coupled van der Pol oscillators. Telecommunications and Radio Engineering. 2008;9:61–68 (in Russian).
  13. Kuznetsov AP, Paksjutov VI. About dynamics of two van der Pol – Duffing oscillators with dissipative coupling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(6):48–64 (in Russian).
  14. Kuznetsov AP, Paksjutov VI. Features of the parameter plane of two nonidentical coupled Van der Pol – Duffing oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(4):3–19. DOI: 10.18500/0869-6632-2005-13-4-3-19 (in Russian).
  15. Kuznetsov AP, Paksjutov VI, Roman JP. Features of the synchronization of coupled van der Pol oscillators with nonidentical control parameters. Technical Physics Letters. 2007;33:636–638. DOI: 10.1134/S1063785007080032.
  16. Kuznetsov AP, Paksjutov VI, Roman JP. Properties of synchronization in the system of nonidentical coupled van der pol and van der Pol – Duffing oscillators. Broadband synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(4):3–15 (in Russian). DOI: 10.18500/0869-6632-2007-15-4-3-15.
  17. Kuznetsov AP, Roman JuP. Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol–Duffing oscillators. Broadband synchronization. Physica D. 2009;238(16):1499–1506. DOI: 10.1016/j.physd.2009.04.016.
  18. Doedel E, Paffenroth RC, Fairgrieve TF, Kuznetsov YA, Oldeman BE, Sandstede B, Wang X. «AUTO-2000: Continuation and bifurcation software for ordinary differential equations (with HOMCONT)». Technical report. Concordia University; 2002.
  19. Anishchenko VS. Complex oscillations in simple systems: initiation, structure and feature of dynamic chaos in radiophysics systems. Moscow: Nauka, Fizmatlit; 1990. 312 p. (in Russian).
Received: 
09.06.2009
Accepted: 
24.02.2009
Published: 
30.04.2010
Short text (in English):
(downloads: 74)