ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Landa P. S. Changes in the effective parameters of averaged motions in nonlinear systems subject to noise or vibration. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 3, pp. 33-55. DOI: 10.18500/0869-6632-2008-16-3-33-55

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 93)
Article type: 

Changes in the effective parameters of averaged motions in nonlinear systems subject to noise or vibration

Landa Polina Solomonovna, Lomonosov Moscow State University

An important problem of the change in the effective parameters of averaged motions in nonlinear systems is described. This problem is known in physics for a long time. It is concerned with the derivation of bodies motion equations taking into account the collisions with the molecules of the surrounding gas. Many researchers believe implicitly that this problem is essential only for the transfer from microscopic equations to macroscopic ones. However this problem reveals often itself in the present-day macroscopic physics. Below we give a number of the examples of such the change.

Key words: 
  1. Boltzmann L. Lectures on Gas Theory. University of California Press; 1964. 490 p.
  2. Klimontovich YL. Statistical Physics. Moscow: Nauka; 1982. 608 p. (in Russian).
  3. Prandtl L. Bericht uber Untersuchungen zur ausgebildeten Turbulenz. Zs. angew. Math. Mech. 1925;5(2):136–139. DOI: 10.1002/zamm.19250050212.
  4. Landau LD, Lifshits EM. Hydrodynamics. Moscow: Nauka; 1986. 736 p. (in Russian).
  5. Prandtl L. Fuhrer durch die Stromungslehre. 3 ed. Vieweg, Braunschweig; 1949. 648 p. (in German).
  6. Ginevsky AS, Kolesnikov AV. Ideal raft theory. Proc. Acad. Sci. USSR. 1980;251(2):312–315 (in Russian).
  7. Brillouin L. Can the rectifier become a thermodynamical demon? Phys. Rev. 1950;78(5):627–628. DOI: 10.1103/PhysRev.78.627.2.
  8. MacDonald DKC. Brownian movement. Phys. Rev. 1957;108(3):541–545. DOI: 10.1103/PhysRev.108.541.
  9. Alkemade CTJ. On the problem of Brownian motion of nonlinear systems. Physica. 1958;24(6–10):1029–1034. DOI: 10.1016/S0031-8914(58)80121-4.
  10. Van Kampen NG. Thermal fluctuations in a nonlinear system. Phys. Rev. 1958;110(2):319–323. DOI: 10.1103/PhysRev.110.319.
  11. Marek A. A note to recent theories of Brownian motion in nonlinear systems. Physica. 1959;25(7–12):1358–1367. DOI: 10.1016/0031-8914(59)90056-4.
  12. Stratonovich RL. On a paradox in the theory of thermal fluctuations of nonlinear resistances. Moscow University Bulletin. 1960;(4):99–102 (in Russian).
  13. Feynman R, Leighton R, Sands M. Feynman Lectures on Physics. Vol. 4. Ch. 46. Moscow: Mir; 1965. P. 138–152 (in Russian).
  14. Peskin C, Odell G, and Oster G. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 1993;65(1):316–324. DOI: 10.1016/S0006-3495(93)81035-X.
  15. Svoboda K, Schmidt CF, Schnapp BJ, and Block SM. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993;365(6448):721–727. DOI: 10.1038/365721a0.
  16. Magnasco MO. Forced thermal ratchets. Phys. Rev. Lett. 1993;71(10):1477–1481. DOI: 10.1103/physrevlett.71.1477.
  17. Astumian RD and Bier M. Fluctuation driven ratchets: molecular motors. Phys. Rev. Lett. 1994;72(11):1766–1769. DOI: 10.1103/PhysRevLett.72.1766.
  18. Doering CR. Randomly rattled ratchets. Il Nuovo Cimento D. 1995;17(7–8):685–697. DOI: 10.1007/BF02451826.
  19. Hanggi P and Bartussek R. Brownian rectifiers: How to convert brownian motion into directed transport. In: Parisi J, Muller SC, Zimmermann W, editors. Nonlinear Physics and Complex Systems – Current Status and Future Trends. Lect. Notes in Physics. Vol. 476. Berlin: Springer-Verlag; 1996. P. 294–308. DOI: 10.1007/BFb0105447.
  20. Landa PS. Noise-induced transport of Brownian particles with consideration for their mass. Phys. Rev. E. 1998;58(2):1325–1333. DOI: 10.1103/PhysRevE.58.1325.
  21. Gammaitoni L. Stochastic resonance. Rev. Mod. Phys. 1998;70(1):223–287. DOI: 10.1103/RevModPhys.70.223.
  22. Landa PS. Regular and Chaotic Oscillations. Berlin-Heidelberg: Springer-Verlag; 2001. 397 p. DOI: 10.1007/978-3-540-45252-2.
  23. Landa PS. Mechanism of stochastic resonance. Doklady Physics. 2004;399(4):477–480 (in Russian).
  24. Stratonovich RL. Selected Questions of the Theory of Fluctuations in Radio Engineering. Moscow: Sovetskoe Radio; 1961. 560 p. (in Russian).
  25. Blekhman II. Vibrational Mechanics. World Scientific; 2000. 536 p. DOI: 10.1142/4116.
  26. Blekhman II, Landa PS. Conjugate resonances in nonlinear systems with two-frequency exposure. Vibration-induced bifurcations. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(1–2):44 (in Russian).
  27. Blekhman II and Landa PS. Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation. Int. J. Non-linear Mechanics. 2004;39(3):421–426. DOI: 10.1016/S0020-7462(02)00201-9.
  28. Blekhman II, Landa PS. Effect of conjugate resonances and bifurcations under the biharmonic excitation of a pendulum with a vibrating suspension axis. Doklady Physics. 2004;49(3):187–190. DOI: 10.1134/1.1710687.
Short text (in English):
(downloads: 73)
На сайте журнала 30.03.2023 запланированы технические работы. В это время сайт может быть недоступен. С уважением, администрация сайта.