ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Anishchenko V. S., Akopov A. A., Vadivasova T. E., Okrokvertskhov G. A., Astakhov V. V. Chaos in autooscillating medium due to spatial inhomogeneity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 4, pp. 60-70. DOI: 10.18500/0869-6632-2004-12-4-60-70

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
538.56:517.33

Chaos in autooscillating medium due to spatial inhomogeneity

Autors: 
Anishchenko Vadim Semenovich, Saratov State University
Akopov Artem Aleksandrovich, Saratov State University
Vadivasova Tatjana Evgenevna, Saratov State University
Okrokvertskhov Georgiy Aleksandrovich, Saratov State University
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Abstract: 

In the present paper we show that inhomogeneity of a self-sustained oscillating medium can be responsible for the apperance of a chaotic behavior. We compute the maximal Lyapunov exponent by using different calculation methods. It is established that for a fixed spatial point the autocorrelation function of the real amplitude A (t) decays exponentially with the rate that is one order less than the maximal Lyapunov exponent and is defined by the effective phase diffusion coefficient of the chaotic process А(t).

Key words: 
Acknowledgments: 
The work was supported by the program "Basic research and higher education" (grant SR-006-X1). grant of RFBR № 04-02-16283 and grant of the Ministry of Education A04-2.9-527. The authors are grateful to A.N. Pavlov, G.I. Strelkova and A.P. Chetverikov for useful advice and assistance in working on the article.
Reference: 

1. Gollub JP, Benson SV. Select Many routes to turbulent convection. Fluid J. Mech. 1980;100(3):449–470; Lesieur М. Turbulence in Fluids. Dordrecht: Springer; 1987. DOI: 10.1007/978-94-009-3545-7_1; Sato Sh, Sano M, Sawada Y. Bifurcation to chaos and dimensionality of attractors in an extended Rayleigh-Benard convection system. Phys. Rev. А. 1988;37(5):1679–1683. DOI: 10.1103/PhysRevA.37.1679; Kida 5., Yamada M, Ohkitani K. A route to chaos and turbulence. Physica D. 1989;37(1–3):116–125; Bohr T, Jensen MH, Paladin G, Vulpiani А. Dynamical Systems Approach to Turbulence. New York: Cambridge University; 1998. 350 p.; Aranson LS, Kramer L. The world of the complex Ginzburg Landau equation. Riev. Modern Phys. 2002;74:99–143.

2. Kuramoto Y. Chemical Oscillations, Waves and Turbulence. Berlin: Springer; 1984; Pomeau Y, Manneville P. Stability and fluctuations of a spatially periodic convective flow. J. Phys. Lett. 1979;40(23):609–612. DOI: ff10.1051/jphyslet:019790040023060900ff. ffjpa-00231699; Chaté H, Manneville P. Transition to turbulence via spatio-temporal intermittency. Phys. Rev. Lett. 1987;58(2):112–115. DOI:https://doi.org/10.1103/PhysRevLett.58.112; Coullet Р, Gil L, Lega J. A form of turbulence associated with defects. Physica D. 1989;37(1–3):91–103; Chaté H. Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation. Nonlinearity. 1994;7(1):185. DOI 10.1088/0951-7715/7/1/007.

3. Manneville Р, Chaté H. Phase turbulence in the two-dimensional complex Ginzburg-Landau equation Physica. 1996;96:30–46.

4. Ermentrout GB, Kopell N. Frequency plateaus in a chain of weakly coupled oscillators.ТАМ J. Math. Ann. 1984;15:215–237.

5. Yamaguchi Y, Shimizu H. Theory of self-synchronization in the presence of native frequency distribution and external noises. Physica D IID. 1984;11:212–226.

6. Strogatz S.H., Mirollo R.E. Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies. Physica D. 1988;31:143–168.

7. Osipov GV, Sushchik MM. Synchronized clusters and multistability in arrays of oscillators with different natural frequencies. Phys. Веу. E. 1998;58(6): 7198–7207. DOI: 10.1103/PhysRevE.58.7198.

8. Vadivasova TE, Strelkova GI, Anishchenko VS. Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise and harmonic forcings. Phys. Rev. В. 2001;63(3):036225. DOI: 10.1103/PhysRevE.63.036225.

9. Ermentrout GB, Troy WC. Phaselocking in a reaction-diffusion system with a linear frequency gradient. SIAM J. Appl. Math. 1986;46(3):359–367.

10. Akopov AA, Vadivasova TE, Astakhov VV, Matyushkin DD. Partial synchronization in inhomogeneous autooscillatory media. JETP Lett. 2003;29(15): 629–631.

11. Akopov AA, Vadivasova TE, Astakhov VV, Matyushkin DD. Cluster synchronization in an inhomogeneous self-oscillatory medium. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(4–5):64–73.

12. Samarsky AA, Gulin AV. Numerical methods. Moscow: Nauka; 1989. 432 p.

13. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov Exponents From a Time Series. Physica D. 1985. Vol. 16.Р. 285. 16(3):285-317. DOI:10.1016/0167-2789(85)90011-9.

14. Anishchenko VS, Vadivasova TE, Kurths J, Okrokvertskhov GA, Strelkova GI. Correlation analysis оf dynamical chaos. Physica А. 2003:325(1–2):199–212. DOI: 10.1016/S0378-4371(03)00199-7; Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI. Autocorrelation function and spectral linewidth of spiral chaos in a physical experiment. Phys. Rev. Е. 2004;69(3):036215. DOI: 10.1103/PhysRevE.69.036215.

Received: 
08.09.2004
Accepted: 
11.11.2004
Published: 
23.12.2004