ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Malyaev V. S., Vadivasova T. E., Tishina O. V., Anishchenko V. S. Chaos suppression and spectrum narrowing in a noise-stabilized unstable nonlinear oscillator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 1, pp. 37-45. DOI: 10.18500/0869-6632-2009-17-1-37-45

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 102)
Language: 
Russian
Article type: 
Article
UDC: 
537.86:621.373

Chaos suppression and spectrum narrowing in a noise-stabilized unstable nonlinear oscillator

Autors: 
Malyaev Vladimir Sergeevich, Saratov State University
Vadivasova Tatjana Evgenevna, Saratov State University
Tishina Olga Vladimirovna, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University
Abstract: 

In the present paper we study an unstable nonlinear oscillator in which the growth of amplitude of oscillations is limited by noise influence. We calculate the characteristics of noise-stabilized fluctuations. It is shown when the noise intensity changes, the system can demonstrate different effects such as the suppression of exponential instability of trajectories and the narrowing of the spectrum of fluctuations. 

Reference: 
  1. Stratonovich R L. Selected issues of the theory of fluctuations in radio engineering. Moscow: Sovet radio; 1961. 558 p. (In Russian).
  2. Malakhov AN. Fluctuations in self-oscillating systems. Moscow: Nauka; 1968. 660 p. (In Russian).
  3. Kramers HA. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica. 1940;7:284–304. DOI: 10.1016/S0031-8914(40)90098-2.
  4. Van Kampen NG. Stochastic processes in physics and chemistry. Moscow: Vyshaya shkola; 1990. 376 p. (In Russian).
  5. Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI. Statistical properties of dynamical chaos. Phys. Usp. 2005;48(2):151–166. DOI: 10.3367/UFNr.0175.200502c.0163.
  6. Arnold L. Random dynamical systems. New-York: Springer-Verlag, Berlin: Heidelberg; 1998.
  7. Horsthemke V, Lefebvre R. Noise-induced transitions. Moscow: Mir; 1987. 400 p. (In Russian).
  8. Graham R. Macroscopic potentials, bifurcations and noise in dissipative systems. Noise in Nonlinear Dynamical Systems. Vol. 1: Theory of continuous Fokker–Planck systems. Ed. Moss F, McClintock PVE. Cambridge: Cambridge University Press, 1989. 353 p.
  9. Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 1981;14(11):453–457. DOI: 10.1088/0305-4470/14/11/006.
  10. Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S. Stochastic resonance in bistable systems. Phys. Rev. Lett. 1989;62(4):349–352. DOI: 10.1103/PhysRevLett.62.349.
  11. Anishchenko VS, Neiman AB, Moss F, Shimansky-Geier L. Stochastic resonance: noise-enhanced order. Phys. Usp. 1999;42:7–36. DOI: 10.1070/PU1999v042n01ABEH000444.
  12. Pikovsky AS, Kurths Yu. Coherence Resonance in a noise-driven excitable system. Phys.Rev.Lett. 1997;78(5):775–778.
  13. Linder B, Schimansky-Geier L. Analitical approach to the stochastic FitzHugh–Nagumo system and coherence resonance. Phys. Rev. E. 1999;60(6):7270–7276. DOI: 10.1103/physreve.60.7270.
  14. Sanchez E. Mat systems by noise: An experimental study. Phys. Rev. E. 1997;56(4):4068–4071. DOI: 10.1103/PHYSREVE.56.4068.
  15. Koronovskii AA. et al. Generalized synchronization and noise-induced synchronization: The same type of behavior of coupled chaotic systems. Doklady Physics. 2006;51(4):189–192. DOI: 10.1134/S1028335806040070.
  16. Goldobin DS, Pikovsky A. Synchronization and desynchronization of self-sustained oscillators by common noise. Phys. Rev. E. 2005;71(4):045201. DOI: 10.1103/PhysRevE.71.045201.
  17. Finn JM, Tracy ER, Cooke WE, Richardson AS. Noise stabilised random attractor. Phys. Rev. E. 2006;73(2):026220. DOI: 10.1103/PhysRevE.73.026220.
  18. Zohm H. Edge-localized modes (ELMs). Plasma Phys. Contr. Fusion. 1996;38(2):105–128. DOI: 10.1088/0741-3335/38/2/001.
  19. Connor JW. Are view of models for ELMs. Plasma Phys. Contr. Fusion. 1998;40(2):191.
  20. Arnold L, Imkeller P. Stochastic bifurcation of the noisy Duffing oscillator. Report, Institut fur Dynamische Systeme. Universit at Bremen, 2000.
Received: 
19.06.2008
Accepted: 
19.06.2008
Published: 
30.04.2009
Short text (in English):
(downloads: 49)