ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Vadivasova T. E., Anishchenko V. S., Strelkova G. I., Fomin A. I. Cluster and global synchronization in a quasi-harmonic self-oscillatory chain in the presence of noise. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 3, pp. 110-124. DOI: 10.18500/0869-6632-2002-10-3-110-124

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

Cluster and global synchronization in a quasi-harmonic self-oscillatory chain in the presence of noise

Vadivasova Tatjana Evgenevna, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University
Strelkova Galina Ivanovna, Saratov State University
Fomin Anton Igorevich, Saratov State University

We study numerically effects of noise оn synchronization phenomena in а chain оf Van der Pol oscillators. A structure оf frequency clusters in the non-homogeneous noisy chain is analyzed. We generalize the notion оf effective synchronization to thе case оf а spatially extended system. The effect of amplitude relations оn the phase dynamics is also explored. The possibility of realizing external synchronization of the homogeneous chain was considered. We clear uр а role оf two components of coupling (diffusive and one-direct coupling) and а noise sources in relation to the global synchronization.

Key words: 
This work is supported by Grant № REC-006 of the U.S. Civilian Research аnd Development Foundation (CRDF) аnd the RFBR (Grant Ne 00-02-17512).
  1. Van der Pol В. Theory оf the amplitude оf free and forced triode vibration. Radio Rev. 1920;1:701-710.
  2. Andronov AA, Vit АА. To the theory of locking оf the Van der Pol oscillator. In: Works оf A.A. Andronov. Moscow: AS USSR; 1956 (in Russian).
  3. Blekhman II. Synchronization in Science and Technology. American Society of Mechanical Engineers; 1988. 255 p.
  4. Kuramoto Y. Chemical Oscillations Waves and Turbulence. Berlin: Springer-Verlag; 1984. 158 p. DOI: 10.1007/978-3-642-69689-3.
  5. Fujisaka H, Yamada Y. Stability theory оf synchronized motions in coupled oscillatory systems. Progr. Theor. Phys. 1983;69(1):32-47. DOI: 10.1143/PTP.69.32.
  6. Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 1986;29(9):795-803. DOI: 10.1007/BF01034476.
  7. Pecora L, Carroll T. Synchronization оf chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
  8. Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Synchronization оf chaos. Int. J. Bifurc. Chaos. 1992;2(3):633-644. DOI: 10.1142/S0218127492000756.
  9. Rosenblum MG, Pikovsky A, Kurths J. Phase synchronization of chaotic oscillations. Phys. Rev. Lett. 1996;76(11):1804-1807. DOI: 10.1103/PhysRevLett.76.1804.
  10. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization оf chaos in unidirectorally coupled chaotic systems. Phys. Rev. В. 1995;51(2):980-994. DOI: 10.1103/PhysRevE.51.980.
  11. Anishchenko VS, Vadivasova TE. Synchronization of self-oscillations and noise-induced oscillations. Radiophys. Quantum Electron. 2002;47(2):1-33.
  12. Neiman AB. Synchronization-like phenomena in coupled stochastic bistable systems. Phys. Rev. Е. 1994;49(4):3484-3488. DOI: 10.1103/PhysRevE.49.3484.
  13. Shulgin BV, Neiman AB, Anishchenko VS. Mean switching frequency locking т stochastic bistable systems driven by periodic force. Phys. Rev. Lett. 1995;75(23):4157-4160. DOI: 10.1103/PhysRevLett.75.4157.
  14. Han SK, Yim TG, Postnov DE, Sosnovtseva OV. Interacting coherence resonance oscillators. Phys. Rev. Lett. 1999;83(9):1771-1774. DOI: 10.1103/PhysRevLett.83.1771.
  15. Anishchenko VS, Neiman AB, Moss F, Schimansky-Geier L. Stochastic resonance: noise-induced order. Phys. Usp. 1999;42(1):7-36. DOI: 10.1070/PU1999v042n01ABEH000444.
  16. Kuramoto Y. Progr. Theor. Phys. 1974;79:212.
  17. Kostin IK, Romanovsky YM. Fluctuations in systems оf many coupled generators. Vestnik MGU. 1972;13(6):698-705 (in Russian).
  18. Malafeev VM, Polyakova MS, Romanovskii YM. On the locking process in a chain of self-excited oscillators which are coupled via a conductivity. Radiophys. Quantum Electron. 1970;13(6):738-741. DOI: 10.1007/BF01030781
  19. Aizawa Y. Synergetic approach to the phenomena of mode-locking in nonlinear systems. Progr. Theor. Phys. 1976;56(3):703-716. DOI: 10.1143/PTP.56.703.
  20. Ermentrout GB, Kopell N. Frequency plateaus in a chain of weakly coupled oscillators. SIАМ J. Math. Ann. 1984;15(2):215-237. DOI: 10.1137/0515019.
  21. Yamaguchi Y, Shimizu H. Theory of self-synchronization in the presence of native frequency distribution and external noises. Physica D. 1984;11(1-2):212-226. DOI: 10.1016/0167-2789(84)90444-5.
  22. Ermentrout GB, Troy WC. Phase-locking in a reaction-diffusion system with а linear frequency gradient. SIAM J. Appl. Math. 1986;39(3):623-660.
  23. Sakaguchi H, Shinomoto S, Kuramoto Y. Local and global self-entrainments in oscillator lattices. Progr. Theor. Phys. 1987;77(5):1005-1010. DOI: 10.1143/PTP.77.1005.
  24. Strogatz SH, Mirollo RE. Phase-locking and critical phenomena in lattices оf coupled nonlinear oscillators with random intrinsic frequencies. Physica D. 1988;31(2):143-168. DOI: 10.1016/0167-2789(88)90074-7.
  25. Strogatz SH, Mirollo RE. Collective synchronization in lattices of nonlinear oscillators with randomness. J. Phys. А. 1988;21(13):L699-L705. DOI: 10.1088/0305-4470/21/13/005.
  26. Afraimovich VS, Nekorkin VI, Osipov GV, Shalfeev VD. Stability, structures and chaos in nonlinear network о synchronization. IPPh RAN, N.Novgorod; 1989 (in Russian).
  27. Matthews PC, Mirollo RE, Strogatz SH. Dynamics of а large system оf coupled nonlinear oscillators. Physica D. 1991;52(2-3):293-331. DOI: 10.1016/0167-2789(91)90129-W.
  28. Tass P. Phase and frequency shifts in а population оf phase oscillators. Phys. Rev. E. 1997; 56(2):2043-2059. DOI: 10.1103/PhysRevE.56.2043.
  29. Osipov GV, Sushchik MM. Synchronized clusters and multistabylity in arrays оf oscillators with different natural frequencies. Phys. Rev. Е. 1998;58(6):7198-7207. DOI: 10.1103/PhysRevE.58.7198.
  30. Anishchenko VS, Aranson LS, Postnov DE, Rabinovich МI. Spatial synchronization and bifurcations of chaos development in a chain of coupled self-oscillators. DAN USSR. 1986;286(5):1120-1124 (in Russian).
  31. Braiman Y, Linder JF, Ditto WL. Taming spatiotemporal chaos with disorder. Nature. 1995;378(6556):465-467. DOI: 10.1038/378465a0.
  32. Braiman Y, Ditto WL, Wiesenfeld K, Spano ML. Disorder-enhanced synchronization. Phys. Lett А. 1995;206(1-2):54-60. DOI: 10.1016/0375-9601(95)00570-S.
  33. Wiesenfeld K, Bracikowski C, James G, Ray R. Observation of anti-phase states in а multi-mode laser. Phys. Rev. Lett. 1990;65(14):1749-1752. DOI: 10.1103/PhysRevLett.65.1749.
  34. Romanovsky YM, Stepanova NV, Chernavsky DS. Mathematical Biophysics. Moscow: Nauka; 1984. 304 p. (in Russian).
  35. Winfree AT. The Geometry of Biological Time. New York: Springer; 1980. 779 p. DOI: 10.1007/978-1-4757-3484-3.
  36. Murray JD. Mathematical Biology. Berlin-Heidelberg: Springer; 1989. 551 p. DOI: 10.1007/b98868.
  37. Mosekilde E, Mouritsen OG, editors. Modeling the Dynamics оf Biological Systems. Berlin: Springer; 1995. 294 p. DOI: 10.1007/978-3-642-79290-8.
  38. Abarbanel GDI, Rabinovich МI, Silverstone А. et al. Synchronization in neural assembles. Phys. Usp. 1996;4(4):365-390 (in Russian).
  39. Hakim V, Rappel W-J. Dynamics оf thе globally coupled complex Ginzburg - Landau equation. Phys. Rev. А. 1992;46(12):R7347-R7350. DOI: 10.1103/physreva.46.r7347.
  40. Osipov GV, Sushchik MM. Synchronization and controlling in chain оf coupled self-oscillators. Vestnik NNGU. Nonlinear Dynamics and Chaos - II. 1997:5-23 (in Russian).
  41. Ermentrout GB. Oscillator death in populations of «all to all» coupled nonlinear oscillators. Physica D. 1990;41(2):219-231. DOI: 10.1016/0167-2789(90)90124-8.
  42. Rubchinsky L, Sushchik M. Disorder сап eliminate oscillator death. Phys. Rev. Е. 2000;62(5):6440-6446. DOI: 10.1103/PhysRevE.62.6440.
  43. Lorenzo MN, Perez-Munuzuri V. Influence оf low intensity noise оn assemblies оf diffusively coupled chaotic cells. Chaos. 2001;11(2):371-376. DOI: 10.1063/1.1372513.
  44. Gaponov-Grekhov AV, Rabinovich MI. Dynamic chaos in ensembles of structures and spatial development of turbulence in unbounded systems. In: Ebeling W, Ulbricht H, editors. Selforganization by Nonlinear Irreversible Processes. N.Y.: Springer; 1986. P. 37–46. DOI: 10.1007/978-3-642-71004-9_4.
  45. Kaneko K. Spatio-temporal chaos in one- and two-dimensional coupled map lattices. Physica D. 1989;37(1-3):60-82. DOI: 10.1016/0167-2789(89)90117-6.
  46. Kuznetsov AP, Kuznetsov SP. Critical dynamics оf the coupled map lattices оn the threshold оf chaos. Radiophys. Quantum Electron. 1991;34(10-12):1079-1115 (in Russian).
  47. Astakhov VV, Bezruchko BP, Ponomarenko VI. Multistability and isomer classification and evolution in coupled feigenbaum systems. Radiophys. Quantum Electron. 1991;34(1):28-33. DOI: 10.1007/BF01048411
  48. Heagi JF, Caroll TL, Pecora LM. Synchronous chaos in coupled oscillator systems. Phys. Rev. Е. 1994;50(3):1874-1885. DOI: 10.1103/PhysRevE.50.1874.
  49. Kocarev L, Parlitz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 1996;76(11):1816-1819. DOI: 10.1103/PhysRevLett.76.1816.
  50. Pikovsky AS, Rosenblum MG, Kurths J. Synchronization in а population оf globally coupled chaotic oscillators. Europhys. Lett. 1996;34(3):165-170. DOI: 10.1209/epl/i1996-00433-3.
  51. Osipov GV, Pikovsky AS, Rosenblum MG, Kurths J. Phase synchronization effects in а lattice оf non-identical Rossler oscillators. Phys. Rev. Е. 1997;55(3):2353-2361. DOI: 10.1103/PhysRevE.55.2353.
  52. Fomin АI, Vadivasova TE, Sosnovtseva OV, Anishchenko VS. External phase synchronization оf а chaotic oscillator chain. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(4):103-112 (in Russian).
  53. Aranson DG, Ermentrout GB, Kopell N. Amplitude response of coupled oscillators. Physica D. 1990;41(3):403-449. DOI: 10.1016/0167-2789(90)90007-C.
  54. Stratonovich RL. Selected Problems of Fluctuation Theory in Radiotechnics. Moscow: Sov. Radio; 1961. 559 p. (in Russian).
  55. Malakhov AN. Fluctuations in Self-Sustained Systems. Moscow: Nauka; 1968 (in Russian).
  56. Vadivasova TE, Strelkova GI, Anishchenko VS. Phase – frequency synchronization in a chain of periodic oscillators in the presence of noise and harmonic forcing. Phys. Rev. Е. 2001;63(3):036225. DOI: 10.1103/PhysRevE.63.036225.
  57. Vadivasova TE, Anishchenko VS. Effects оf synchronization in а chain оf quasi-harmonic oscillators in the presence оf random and harmonic forces. In: Proceeding оf the Conference «Modern problems of Electronics аn Radiophysics». Saratov; 2001. P. 23-25 (in Russian).
Available online: