ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Feoktistov A. V., Astahov S. V., Anishchenko V. S. Coherence resonance and synchronization of stochastic self-sustained oscillations in the FitzHugh–Nagumo system. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 5, pp. 33-43. DOI: 10.18500/0869-6632-2010-18-5-33-43

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 588)
Language: 
Russian
Article type: 
Article
UDC: 
537.86/.87:530.182

Coherence resonance and synchronization of stochastic self-sustained oscillations in the FitzHugh–Nagumo system

Autors: 
Feoktistov Aleksej Vladimirovich, Saratov State University
Astahov Sergej Vladimirovich, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University
Abstract: 

In present paper the phenomena of coherence resonance, mutual and external synchronization of noise-induced stochastic oscillations in FitzHugh–Nagumo system are studied by means of numerical and natural experiments. The properties of attractor in the system as well as energy exchange processes are analyzed. Self-sustained character of stochastic oscillations in non-autonomous FitzHugh–Nagumo system justified.

Reference: 
  1. Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 1997;78(5):775–778. DOI: 10.1103/PhysRevLett.78.775.
  2. Lindner B, Schimansky-Geier L. Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance. Phys. Rev. E. 1999;60(6):7270–7276. DOI: 10.1103/physreve.60.7270.
  3. Izhikevich EM. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press. Cambridge. MA; 2007.
  4. FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophysics. 1955;17:257–278. DOI: 10.1007/BF02477753.
  5. Scott AC. The electrophysics of a nerve fiber. Rev. Mod. Phys. 1975;47:487–533. DOI: 10.1103/RevModPhys.47.487.
  6. Longtin A. Stochastic resonance in neuron models. J. Stat. Phys. 1993;70:309–327. DOI: 10.1007/BF01053970.
  7. Baltanas JP, Casado JM. Bursting behaviour of the FitzHugh–Nagumo neuron model subject to quasi-monochromatic noise. Phys. D. 1998;122(1):231–240. DOI: 10.1016/S0167-2789(98)00176-6.
  8. Han SK, Yim TG, Postnov DE, Sosnovtseva OV. Interacting coherence resonance oscillators. Phys. Rev. Lett. 1999;83(9):1771–1774. DOI: 10.1103/PhysRevLett.83.1771.
  9. Neiman A, Schimansky-Geier L, Cornell-Bell A, Moss F. Noise-enhanced phase synchronization in excitable media. Phys. Rev. Lett. 1999;83(23):4896–4899. DOI: 10.1103/PhysRevLett.83.4896.
  10. Hu B, Zhou Ch. Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Phys. Rev. E. 2000;61(2):R1001–R1004. DOI: 10.1103/physreve.61.r1001.
  11. Andronov AA, Witt AA, Haikin SE. Theory of oscillations. Moscow: Nauka; 1981. (in Russian)
  12. Makarov VA, del Rio E, Ebeling W, Velarde MG. Dissipative Toda-Rayleigh lattice and its oscillatory modes. Phys. Rev. E. 2001;64:036601. DOI: 10.1103/PhysRevE.64.036601.
  13. Anishchenko VS, Vadivasova TE, Strelkova GI. Self-sustained oscillations of dynamical and stochastic systems and their mathematical image — an attractor. Nelin. Dinam. 2010;6(1):107–126.
Received: 
26.03.2010
Accepted: 
03.11.2010
Published: 
31.12.2010
Short text (in English):
(downloads: 110)