ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Shabunin A. V. Control of multistability and forced synchronization in coupled self-sustained oscillators with period-doubling bifurcations. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 2, pp. 29-39. DOI: 10.18500/0869-6632-2012-20-2-29-39

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 90)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Control of multistability and forced synchronization in coupled self-sustained oscillators with period-doubling bifurcations

Autors: 
Shabunin Aleksej Vladimirovich, Saratov State University
Abstract: 

Control of phase multistability and synchronization are investigated in two coupled Feigenbaum systems on example of Chua’s generators, coupled through symmetric diffusive link. The control is fulfilled by externel periodic signals, which simultaneously influence the both oscillators with equal amplitudes and frequencies, but with different phases. The behaviour of the system is explored in depandence on amplitude, frequency and phase difference between the signals. Influence of the phase difference on width of the synchronization tongue is considered.

Reference: 
  1. Arecchi FT, Meucci R, Puccioni G, Tredicce J. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 1982;49(17):1217–1220. DOI: 10.1103/PhysRevLett.49.1217.
  2. Prengel F, Wacker A, Scholl E. Simple model for multistability and domain formation in semiconductor superlattices. Phys. Rev. B. 1994;50(3):1705–1712. DOI: 10.1103/physrevb.50.1705.
  3. Sun NG, Tsironis GP. Multistability of conductance in doped semiconductor superlattices. Phys. Rev. B. 1995;51(16):11221–11224. DOI: 10.1103/PhysRevB.51.11221.
  4. Foss J, Longtin A, Mensour B, Milton J. Multistability and delayed recurrent loops. Phys. Rev. Lett. 1996;76(4):708–711. DOI: 10.1103/physrevlett.76.708.
  5. Dvornikov AA, Utkin GM, Chukov AM. Mutual synchronization of a chain of resistance-coupled self-excited oscillators. Radiophys. Quantum Electron. 1984;27(11):967–972. DOI: 10.1007/BF01037390.
  6. Ermentrout GB. The behavior of rings of coupled oscillators. J. Math. Biol. 1985;23(1):55–74. DOI: 10.1007/BF00276558.
  7. Ermentrout GB. Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. Appl. Math. 1992;52(6):1665–1687. DOI: 10.1137/0152096.
  8. Shabunin AV, Akopov AA, Astahov VV, Vadivasova TE. Running waves in a discrete anharmonic self-oscillating medium. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(4):37–55 (in Russian). DOI: 10.18500/0869-6632-2005-13-4-37-55.
  9. Astakhov VV, Bezruchko BP, Gulyaev YP, Seleznev EP. Multistable states in dissipatively coupled Feigenbaum systems. Tech. Phys. Lett. 1989;15(3):60–65 (in Russian).
  10. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Oscillation modes and their evolution in dissipatively coupled Feigenbaum systems. Tech. Phys. 1990;60(10):19–26 (in Russian).
  11. Astakhov V, Bezruchko B, Ponomarenko V, Seleznev E. Multistability in a system of radiotechnical generators with capacitive coupling. Radiotechnics and Electronics. 1991;36:2167–2172.
  12. Anishchenko VS, Astakhov VV, Vadivasova TE, Sosnovtseva OV, Wu CW., Chua L. Dynamics of two coupled Chua’s circuits. Int. J. of Bifurcation and Chaos. 1995;5(6):1677–1699. DOI: 10.1142/S0218127495001241.
  13. Astakhov VV, Shabunin AV, Anishchenko VS. Spectral patterns in the formation of multistability in coupled oscillators with a doubling of the period. J. Commun. Technol. Electron. 1997;42(8):974–981 (in Russian).
  14. Astakhov V, Shabunin A, Kapitaniak T, Anishchenko V. Loss of chaos synchronization through the sequence of bifurcations of saddle periodic orbits. Phys. Rev. Lett. 1997;79(6):1014–1017. DOI: 10.1103/PhysRevLett.79.1014.
  15. Astakhov V, Shabunin A, Uhm W, Kim S. Multistability formation and synchronization loss in coupled Hennon maps: Two sides of the single bifurcational mechanism. Phys. Rev. E. 2001;63(5):056212. DOI: 10.1103/PhysRevE.63.056212.
  16. Bezruchko BP, Prokhorov MD, Seleznev EP. Oscillation types, multistability, and basins of attractors in symmetrically coupled period-doubling systems. Chaos, Solitons and Fractals. 2003;15(4):695–711. DOI: 10.1016/S0960-0779(02)00171-6.
  17. Shabunin A, Feudel U, Astakhov V. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators. Phys. Rev. E. 2009;80(2):026211. DOI: 10.1103/PhysRevE.80.026211.
  18. Shabunin AV, Litvinenko AN, Astahov VV. Controll of multistability by means of bi­phase resonance force. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(1):25–39 (in Russian). DOI: 10.18500/0869-6632-2011-19-1-25-39.
  19. Komuro M, Tokunaga R, Matsumoto T, Chua LO, Hotta A. Global bifurcation analysis of the double-scroll circuit. Int. J. Bifurcation and Chaos. 1991;1(1):139–182. DOI: 10.1142/S0218127491000105.
  20. Khibnik AI, Roose D, Chua L. Chua’s Сircuit: A Paradigm for Chaos. Singapore: World Scientific; 1993. 145 p.
Received: 
24.01.2012
Accepted: 
03.03.2012
Published: 
29.06.2012
Short text (in English):
(downloads: 78)