ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Seleznev E. P., Zaharevich A. M. Control parameter space of a nonlinear oscillator under quasiperiodic driving. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 6, pp. 17-35. DOI: 10.18500/0869-6632-2009-17-6-17-35

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 121)
Language: 
Russian
Article type: 
Article
UDC: 
518.30

Control parameter space of a nonlinear oscillator under quasiperiodic driving

Autors: 
Seleznev Evgeny Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Zaharevich Andrej Mihajlovich, Saratov State University
Abstract: 

Dynamics and space of сontrol parameters for a nonlinear oscillator under quasi­periodic driving are investigated experimentally by using a nonlinear circuit with p­n junction diode and numerically by using maps and differential equations. The dynamics of the systems under quasiperiodic driving is invariant due to initial driving phases, as a result the plane of the driving amplitudes is symmetrical. The basic element of the control parameter space is the set of torus doubling terminal points, which are the starting and end points of the torus doubling lines, transition to strange non­chaotic and chaotic attractors.

Reference: 
  1. Grebodgi C, Ott E, Pelican S, Yorke J. Strange attractor that are not chaotic. Physica. 1984;13(1-2):261–268. DOI: 10.1016/0167-2789(84)90282-3.
  2. Romeiras FJ, Ott E. Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing. Phys Rev A Gen Phys. 1987;35(10):4404-4413. DOI: 10.1103/physreva.35.4404.
  3. Ding M, Grebogi C, Ott E. Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. Phys Rev A Gen Phys. 1989;39(5):2593–2598. DOI: 10.1103/physreva.39.2593.
  4. Ditto WL, Spano ML, Savage HT, Rauseo SN, Heagy J, Ott E. Experimental observation of a strange nonchaotic attractor. Phys Rev Lett. 1990;65(5):533–536. DOI: 10.1103/PhysRevLett.65.533.
  5. Ding M, Grebogi C, Ott E. Dimensions of strange nonchaotic attractors. Phys. Lett. A. 1989;137(4-5):167–172.
  6. Zhou T, Moss F, Bulsara A. Observation of a strange nonchaotic attractor in a multistable potential. Phys Rev A. 1992;45(8):5394–5400. DOI: 10.1103/physreva.45.5394.
  7. Feudel U, Kurths J, Pikovsky A. Strange nonchaotic attractors in quasiperiodically forced circle map. Physica. 1995;88:176–186.
  8. Pikovsky AS, Feudel U. Characterizing strange nonchaotic attractors. Chaos. 1995;5(1):253–260. DOI: 10.1063/1.166074.
  9. Pikovsky A, Feudel U. Correlations and spectra of strange nonchaotic attractors. J. Phys. A: Math., Gen. 1994;27:5209–5219.
  10. Ding M, Scott-Kelso J. Phase-resetting map and the dynamics of quasiperiodically forced biological oscillators. Int. J. Bif. Chaos. 1994;4(3):553–567. DOI: 10.1142/S0218127494000393.
  11. Feudel U, Pikovsky AS, Zaks MA. Correlation properties of a quasiperiodically forced two-level system. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995;51(3):1762–1769. DOI: 10.1103/physreve.51.1762.
  12. Kuznetsov SP, Pikovsky AS, Feudel U. Birth of a strange nonchaotic attractor: A renormalization group analysis. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995;51(3):1629–1632. DOI: 10.1103/physreve.51.r1629.
  13. Anishchenko VS, Vadivasova IE, Sosonovtseva ON. Mechanisms of birth of a strange non-chaotic attractor in displaying a ring with quasi-periodic impact. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(3):34–43.
  14. Lai YC. Transition from strange nonchaotic to strange chaotic attractors. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;53(1):57–65. DOI: 10.1103/physreve.53.57.
  15. Nishikawa T, Kaneko K. Fractalization of a torus as a strange nonchaotic attractor. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(6):6114–6124. DOI: 10.1103/physreve.54.6114.
  16. Anishchenko VS, Vadivasova TE, Sosnovtseva ON. Mechanisms of ergodic torus destruction and apperence of strange nonchaotic attractor. Phys. Rev. 1996;53(5):4451–4456. DOI: 10.1103/physreve.53.4451.
  17. Feudel U, Pikovsky A, Politi A. Renormalization of correlations and spectra of a strange nonchaotic attractor. J. Phys. A. 1996;29(17):5297–5311. DOI: 10.1088/0305-4470/29/17/008.
  18. Sosnovtseva O, Feudel U, Kurths J, Pikovsky A. Multiband strange nonchaotic attractors in quasiperiodically forced systems. Phys. Lett. A. 1996;218:255–267.
  19. Keller G. A note on strange nonchaotic attractors. Fundamenta Mathematicae. 1996;151:139–148.
  20. Prasad A, Mehra V, Ramaswamy R. Intermittency route to strange nonchaotic attractors. Phys. Rev. Lett. 1997;79(21):4127–4130. DOI: 10.1103/PhysRevLett.79.4127.
  21. Witt A, Feudel U, Pikovsky A. Birth of strange nonchaotic attractors due to interior crisis. Physica. 1997;109(1-2):180–190. DOI: 10.1016/S0167-2789(97)00168-1.
  22. Kuznetsov S, Feudel U, Pikovsky A. Renormalization group for scaling at the torus-doubling terminal point. Phys. Rev. E. 1998;57(2):1585–1590. DOI: 10.1103/PhysRevE.57.1585.
  23. Prasad A, Mehra V, Ramaswamy R. Strange nonchaotic attractors in the quasi-periodically forced logistic map. Phys. Rev. E. 1998;57:1576–1584. DOI: 10.1103/PHYSREVE.57.1576.
  24. Negi SS, Prasad A, Ramaswamy R. Bifurcations and transitions in the quasiperiodi-cally driven logistic map. Physica. 2000;145:1–12. DOI: 10.1016/S0167-2789(00)00110-X.
  25. Osinga HM, Feudel U. Boundary crisis in quasiperiodically forced systems. Physica. 2000;141(1-2):54–64. DOI: 10.1016/S0167-2789(00)00031-2.
  26. Hunt BR, Ott E. Fractal properties of robust strange nonchaotic attractors. Phys. Rev. Lett. 2001;87(25):254101. DOI: 10.1103/PhysRevLett.87.254101.
  27. Kuznetsov SP, Neumann E, Pikovsky A, Sataev IR. Critical point of tori collision in quasiperiodically forced systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;62(2):1995–2007. DOI: 10.1103/physreve.62.1995.
  28. Bezruchko BP, Kuznetsov SP, Pikovsky AS, Feudel U, Seleznev EP. On Dynamics of nonlinear systems under external quasi-periodic force near the terminal point of the torus-doubling bifurcation curve. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(6):3–19.
  29. Bezruchko BP, Kuznetsov SP, Seleznev YP. Experimental observation of dynamics near the torus-doubling terminal critical point. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;62(6):7828–7830. DOI: 10.1103/physreve.62.7828.
  30. Kuznetsov SP. Torus fractalization and intermittency. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;65(6):066209. DOI: 10.1103/PhysRevE.65.066209.
  31. Kuznetsov SP, Pikovsky AU, Foidel U. Strange non-chaotic attractor. Nonlinear waves 2004. Ed. Gaponov-Grekhov AV, Neorakin VI. Nizhny Novgorod: IAP RAS; 2005. 544 p. (In Russian).
  32. Kuznetsov S, Feudel U, Pikovsky A. Strange nonchaotic attractors. World scientific series on Nonlinear Science. Series A. Vol. 56. 2006. 213 p.
  33. Bezruchko BP, Prokhorov MD, Seleznev YeP. Multiparameter model of a dissipative nonlinear oscillator in the form of one-dimensional map. Chaos, Solitons, Fractals. 1995;5(11):2095–2107. DOI: 10.1016/0960-0779(95)00007-Q.
  34. Linsay PS. Period doubling and chaotic behaviour in a driven anharmonic oscillator. Phys. Rev. Lett. 1981;47(19):1349–1352.
  35. Testa J, Perez J, Jeffries C. Evidence for universal behavior of a driven nonlinear oscillator. Phys. Rev. Lett. 1982;48(11):714–717. DOI: 10.1103/PHYSREVLETT.48.714.
  36. Buskirk R, Jeffries C. Observation of chaotic dynamics of coupled nonlinear oscillators. Phys. Rev. A. 1985;31(5):3332–3357. DOI: 10.1103/physreva.31.3332.
  37. Bocko MF, Douglass DH, Frutchy HH. Bounded regions of chaotic behavior in the control parameter space of a driven nonlinear resonator. Phys. Lett. A. 1984;104(8):388–390. DOI: 10.1016/0375-9601(84)90740-0.
  38. Klinker T, Meyer-Ilse W, Lauterborn W. Period doubling and chaotic behavior in a driven Toda oscillator. Phys. Lett. A. 1984;101(8):371–375. DOI: 10.1016/0375-9601(84)90604-2.
  39. Astakhov VV, Bezruchko BP, Seleznev EP. Investigation of the dynamics of a nonlinear oscillatory circuit under harmonic action. Journal of Comm. Techn. and Electronics. 1987;32(12): 2558–2566.
  40. Baxter JH, Bocko MF, Douglass DH. Behavior of a nonlinear resonator driven at subharmonic frequencies. Phys Rev A. 1990;41(2):619–625. DOI: 10.1103/physreva.41.619.
  41. Bezruchko B.P. Features of excitation of subharmonic and chaotic oscillations in the circuit with the diode. Soviet Journal Of Communications Technology And Electronics. 1991;36(11):2171–2175.
  42. Daido H. Resonance and intermittent transition from torus to chaos in periodically forced system near intermittency threshold. Progr. Theor. Phys. Japan. 1983;70(3):879–882. DOI: 10.1143/PTP.70.879.
  43. Picovsky AS, Zaks MA, Feuidel U, Kurth J. Singular continuous spectra in dissipative system. Phys. Rev. E. 1995;52(1):285–296. DOI: 10.1103/PhysRevE.52.285.
  44. Zaks MA. Fractal Fourier spectra of cherry flows. Physica. 2001;149(4):237–247. DOI: 10.1016/S0167-2789(00)00211-6.
  45. Ketzmerick R, Petschel G, Geisel T. Slow decay of temporal correlations in quantum systems with Cantor spectra. Phys Rev Lett. 1992;69(5):695–698. DOI: 10.1103/PhysRevLett.69.695.
  46. Holschneider M. Fractal wavelet dimensions and localization. Communications in Mathematical Physics. 1994;160(3):457–473. DOI: 10.1007/BF02173424.
  47. Makarov KA. Asymptotic expansions for Fourier transform of singular self-affine measures. J. Math. An. and App. 1994;187(1):259–286. DOI: 10.1006/jmaa.1994.1355.
  48. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Oscillation modes and their evolution in dissipatively coupled Feigenbaum systems. Tech. Phys. 1990;60(10):19–26 (in Russian).
  49. Astakhov VV, Bezruchko BP, Pudovochkin OB, Seleznev EP. Phase multi-stability and establishment of oscillations in nonlinear systems with period doubling. Soviet Journal Of Communications Technology And Electronics. 1993;38(2):291–295.
  50. Zakharevich AM, Seleznev YeP. Sets of resonant cycles and their evolution in the nonlinear oscillator’s model under two-frequency action. Abstracts of the Second Interdisciplinary School on Nonlinear Dynamics for System and Signal Analysis (EUROATTRACTOR 2001). Warsaw, Poland, 2001. P. 71.
  51. Seleznev YeP, Zakharevich AM. Structure of the control parameters space in the model of the nonlinear oscillator under two-frequency driving. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(2):39–44.
Received: 
12.05.2008
Accepted: 
07.07.2009
Published: 
31.12.2009
Short text (in English):
(downloads: 73)