For citation:
Rubchinsky L. L., Sushik M. M. Direct and reverse relationship between disordered spatial and temporal patterns in arrays of chaotic oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 1, pp. 81-87. DOI: 10.18500/0869-6632-1999-7-1-81-87
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
530.182
Direct and reverse relationship between disordered spatial and temporal patterns in arrays of chaotic oscillators
Autors:
Rubchinsky Leonid Lvovich, Institute of Applied Physics of the Russian Academy of Sciences
Sushik Mihail Mihajlovich, Lobachevsky State University of Nizhny Novgorod
Abstract:
An example of an array of identical Chua’s circuitsorг identical Van der Роl — Duffing oscillators with external harmonic force is considered. It is established that, under nonlinear coupling, there occurs multistability at which the patterns that are more irregular in space possess simpler behaviour in time.
Key words:
Acknowledgments:
The work was supported by the RFBR (project 97-02-17526) and Program for Support of Leading Scientific Schools of the Russian Federation (project 96-15-96593).
The authors are grateful to the organizers and participants of the Chaos-98 conference for interesting discussions.
Reference:
- Rabinovich MI, Sushchik MM. The regular and chaotic dynamics of structures in fluid flows. Phys. Usp. 1990;33(1):1-35. DOI: 10.1070/PU1990v033n01ABEH002403.
- Aranson IS, Ggaponov-Grrekhov AV, Rabinovich MI. The development of chaos in dynamic structure ensembles. J. Exp. Theor. Phys. 1985;62(1):52-59.
- Chua L.O. The Genesis of Chua’s circuit. Archhiv fur Elektronik und Ubertragung-stechnik. 1992;1(3)46:250-257.
- Madan RN, editor. Chua’s circuit: A paradigm for chaos. Singapore: World Scientific; 1993. 1088 p. DOI: 10.1142/1997.
- Shilnikov LP. Chua’s Circuit: Rigorous results and future problems. Int. J. Bifurc. Chaos. 1994;4(3):489-519. DOI: 10.1142/S021812749400037X.
- Kuznetsov AS. Dynamics of the modified Chua oscillator. Bulletin of the University of Nizhny Novgorod. 1998;1:136-145.
- Belykh VN, Verichev NN, Kocarev L, Chua LO. Оn chaotic synchronization in а linear array оf Chua’s circuits. Int. J. Bifurc. Chaos. 1993;3(2):579-589. DOI: 10.1142/S0218126693000356.
- Perez—Villar V, Munuzuri AP, Munuzuri V, Chua LO. Chaotic synchronization оf а one—dimensional array оf nonlinear active systems. Int. J. Bifurc. Chaos. 1993;3(4):1067-1074. DOI: 10.1142/S0218127493000891.
- Venkatesan А, Lakshmanan M. Bifurcation and chaos in the double—well Duffing—Van der Pol oscillator: Numerical and analytical studies. Phys. Rev. E. 1997;56(6):6321-6330. DOI: 10.1103/PhysRevE.56.6321.
- Braiman Y, Lindner JF, Ditto WL. Taming spatiotemporal chaos with disorder. Nature. 1995;378(6556):465-467. DOI: 10.1038/378465a0.
- Lindner JF, Prusha BS, Clay КЕ. Optimal disorders for taming spatiotemporal chaos. Phys. Lett. А. 1997;231(3-4):164-172. DOI: 10.1016/S0375-9601(97)00302-2.
Received:
29.12.1998
Accepted:
11.03.1999
Published:
28.05.1999
Journal issue:
- 316 reads