ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Goncharov P. P., Dzhelauhova G. S., Chechin G. M. Discrete breathers and quasibreathers in nonlinear monoatomic chains. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 6, pp. 57-74. DOI: 10.18500/0869-6632-2007-15-6-57-74

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 177)
Article type: 

Discrete breathers and quasibreathers in nonlinear monoatomic chains

Goncharov Petr Petrovich, Southern Federal University
Dzhelauhova Galina Sergeevna, Southern Federal University
Chechin Georgij Mihajlovich, Southern Federal University

We study the stability of the symmetric and antisymmetric discrete breathers in the monoatomic chain described by potential energy which is a uniform function of the fourth order. It is shown that the change of the stability properties of these two dynamical objects (known as Sievers-Takeno and Page modes, respectively) takes place at the same strength of the inter-site interactions with respect to the on-site interactions. We also present a new method (the «pair synchronization» method) for the discrete breather construction in the arbitrary nonlinear Hamiltonian lattices. This method possesses an explicit physical sense. Its application technique is demonstrated with the chain of linear coupled Duffing oscillators. The concept of quasibreathers which represent the dynamical objects corresponded to small deviations from the exact breather solutions is briefly discussed. 

Key words: 
  1. Aubry S. Breathers in nonlinear lattices: existence, linear stability and quantization. Physica D. 1997;103:201–250.
  2. Flach S, Willis C. R. Discrete breathers. Phys. Rep. 1998;295:181–264.
  3. Sievers AJ, Takeno S. Intrinsic localized modes in anharmonic crystals. Phys. Lett. 1988;61:970–973. DOI: 10.1103/PhysRevLett.61.970.
  4. Aubry S. Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems. Physica D. 2006;216:1–30.
  5. Flach S. Computational studies of discrete breathers. Energy Localization and Transfer. Eds. Dauxois T, Litvak-Hinenzon A, MacKay R, Spanoudaki A. World Scientific. 2004:1–71.
  6. Tsironis GP. If «discrete breathers» is the answer, what is the question? Chaos. 2003;13:657–666. DOI: 10.1063/1.1557234.
  7. Sato M, Hubbard BE, Sievers AT. Nonlinear energy localization and its manipulation in micromechanical oscillator arrays. Rev. Mod. Phys. 2006;78:137–157. DOI: 10.1103/RevModPhys.78.137.
  8. Chechin GM, Dzhelauhova GS, Mehonoshina EA. Quasibreathers as a generalization of the concept of discrete breathers. Phys. Rev. E. 2006;74:036608. DOI: 10.1103/PhysRevE.74.036608.
  9. MacKay RS, Aubry S. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity. 1994;7:1623–1643. DOI: 10.1088/0951-7715/7/6/006.
  10. Flach S. Conditions on the existence of localized excitations in nonlinear discrete systems. Phys. Rev. E. 1994;50:3134–3142. DOI: 10.1103/physreve.50.3134.
  11. Marin JL, Aubry S. Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit. Nonlinearity. 1996;9:1501–1528. DOI: 10.1088/0951-7715/9/6/007.
  12. Rosenberg RM. On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 1966;9:155–242. DOI: 10.1016/S0065-2156(08)70008-5.
  13. Kivshar YuS. Intrinsic localized modes as solitons with a compact support. Phys. Rev. E. 1993;48:R43–R45. DOI: 10.1103/physreve.48.r43.
  14. Gorbach AV, Flach S. Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms. Phys. Rev. E. 2005;72:056607. DOI: 10.1103/PhysRevE.72.056607.
  15. Manevich LI, Mikhlin YuV, Pilipchuk VV. The Method of Normal Oscillations for Essentially Nonlinear Systems. Moscow: Nauka; 1989. (in Russian).
  16. Vakakis AF, Manevich LI, Mikhlin YuV, Pilipchuk VK, Zevin AA. Normal modes and localization in nonlinear systems. New York: Wiley; 1996.
  17. Sakhnenko VP, Chechin GM. Symmetry selected rules in nonlinear dynamics of atomic systems. Dokl. Akad. Nauk. 1993;330(3):308–310.
  18. Chechin GM, Sakhnenko VP. Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results. Physica D. 1998;117:43–76. DOI: 10.1016/S0167-2789(98)80012-2.
  19. Chechin GM, Ryabov DS, Zhukov KG. Stability of low dimensional bushes of vibrational modes in the Fermi–Pasta–Ulam chains. Physica D. 2005;203:121–166. DOI: 10.1016/j.physd.2005.03.009.
  20. Chechin GM, Zhukov KG. Stability analysis of dynamical regimes in nonlinear systems with discrete symmetries. Phys. Rev. E. 2006;73:36216. DOI: 10.1103/PhysRevE.73.036216.
  21. Chechin GM, Novikova NV, Abramenko AA. Bushes of vibrational modes for Fermi–Pasta–Ulam chains. Physica D. 2002;166:208–238. DOI: 10.1016/S0167-2789(02)00430-X.
  22. Whittaker ET, Watson JN. A course of modern analysis. In 2 parts. Part 2: The transcendental functions. Translated from English. Moscow: Cambridge University Press; 1963. 516 p. (in Russian).
  23. Rossler T, Page JB. Optical creation of vibrational intrinsic localized modes in anharmonic lattices with realistic interatomic potentials. Phys. Rev. B. 2000;62:11460–11472. DOI: 10.1103/PhysRevB.62.11460.
  24. Cretegny T, Dauxois T, Ruffo S, Torcini A. Localization and equipartition of energy in the b-FPU chain: Chaotic breathers. Physica D. 1998;121:109–126. DOI: 10.1016/S0167-2789(98)00107-9.
  25. James G. Existence of breathers on FPU lattices. C.R. Acad. Sci. Paris, Ser. 1. 2001;332:581–586.  
Short text (in English):
(downloads: 80)