ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Koronovskii A. A., Kurovskaya M. K., Hramov A. E. Distribution of the laminar phases in the case of type-I intermittency with noise. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 5, pp. 43-59. DOI: 10.18500/0869-6632-2009-17-5-43-59

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 209)
Language: 
Russian
Article type: 
Review
UDC: 
517.9

Distribution of the laminar phases in the case of type-I intermittency with noise

Autors: 
Koronovskii Aleksei Aleksandrovich, Saratov State University
Kurovskaya Maria Konstantinovna, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Abstract: 

This work is devoted to the intermittent behavior caused by the interplay between the dynamical mechanisms resulting in the type­I intermittency and the stochastic processes. The analytical consideration of the laminar phase distribution is given.

Reference: 
  1. Berge P, Pomeau Y, Vidal Ch. L’ordre dans le chaos. Paris: Hermann; 1988. 353 p.
  2. Dubois M, Rubio M, Berge P. Experimental evidence of intermiasttencies associated with a subharmonic bifurcation. Phys. Rev. Lett. 1983;51(16):1446–1449. DOI: 10.1103/PhysRevLett.51.1446.
  3. Platt N, Spiegel EA, Tresser C. On-off intermittency: a mechanism for bursting. Phys. Rev. Lett. 1993;70(3):279–282. DOI: 10.1103/PhysRevLett.70.279.
  4. Heagy JF, Platt N, Hammel SM. Characterization of on-off intermittency. Phys. Rev. E. 1994;49(2):1140–1150. DOI: 10.1103/physreve.49.1140.
  5. Boccaletti S, Valladares DL. Characterization of intermittent lag synchronization. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;62(5):7497–7500. DOI: 10.1103/physreve.62.7497.
  6. Hramov AE, Koronovskii AA. Intermittent generalized synchronization in unidi-rectionally coupled chaotic oscillators. Europhysics Lett. 2005;70(2):169–175. DOI: 10.1209/epl/i2004-10488-6.
  7. Pikovsky AS, Osipov GV, Rosenblum MG, Zaks M, Kurths J. Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 1997;79(1):47–50. DOI: 10.1103/PhysRevLett.79.47.
  8. Lee KJ, Kwak Y, Lim TK. Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators. Phys. Rev. Lett. 1998;81(2):321–324. DOI: 10.1063/1.59935.
  9. Boccaletti S, Allaria E, Meucci R, Arecchi FT. Experimental characterization of the transition to phase synchronization of chaotic CO2 laser systems. Phys Rev Lett. 2002;89(19):194101. DOI: 10.1103/PhysRevLett.89.194101.
  10. Hramov AE, Koronovskii AA, Kurovskaya MK, Boccaletti S. Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Phys Rev Lett. 2006;97(11):114101. DOI: 10.1103/PhysRevLett.97.114101.
  11. Neiman A, Silchenko A, Anishchenko VS, Schimansky-Geier L. Stochastic resonance: Noise-enhanced phase coherence. Phys. Rev. E. 1998;58(6):7118–7125.
  12. Anishchenko VS, Kopeikin AS, Vadivasova TE, Strelkova GI, Kurths J. Influence of noise on statistical properties of nonhyperbolic attractors. Phys. Rev. E. 2000;62(6):7886–7893. DOI: 10.1103/PHYSREVE.62.7886.
  13. Sosnovtseva OV, Fomin AI, Postnov DE, Anishchenko VS. Clustering of noise-induced oscillations. Phys. Rev. E. 2001;64(2):026204. DOI: 10.1103/PhysRevE.64.026204.
  14. Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 1997;78(5):775–778. DOI: 10.1103/PhysRevLett.78.775.
  15. Mangioni S, Deza R, Wio H, Toral R. Disordering effects of color in nonequilibrium phase transitions induced by multiplicative noise. Phys. Rev. Lett. 1997;79(13):2389–2393. DOI: 10.1103/PhysRevLett.79.2389.
  16. Zaikin AA, Kurths J, Schimansky-Geier L. Doubly stochastic resonance. Phys. Rev. Lett. 2000;85(2):227–231. DOI: 10.1103/PhysRevLett.85.227.
  17. Neiman A, Russell David F. Synchronization of noise-induced bursts in noncoupled sensory neurons. Phys. Rev. Lett. 2002;88(13):138103. DOI: 10.1103/PhysRevLett.88.138103.
  18. Zhou CT, Kurths J, Kiss IZ, Hudson JL. Noise-enhanced phase synchronization of chaotic oscillators. Phys. Rev. Lett. 2002;89(1):014101. DOI: 10.1103/PhysRevLett.89.014101.
  19. Zhou CT, Kurths J, Allaria E, Boccaletti S, Meucci R, Arecchi FT. Noiseenhanced synchronization of homoclinic chaos in a CO2 laser. Phys. Rev. E. 2003;67(1):015205. DOI: 10.1103/PhysRevE.67.015205.
  20. Hirsch JE, Huberman BA, Scalapino DJ. Theory of intermittency. Phys. Rev. A. 1982;25(1):519–532. DOI: 10.1103/PHYSREVA.25.519.
  21. Kye W-H, Kim C-M. Characteristic relations of type-I intermittency in the presence of noise. Phys. Rev. E. 2000;62(5):6304. DOI: 10.1103/PhysRevE.62.6304.
  22. Cho JH, Ko MS, Park YJ, Kim CM. Experimental observation of the characteristic relations of type-I intermittency in the presence of noise. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;65(3):036222. DOI: 10.1103/PhysRevE.65.036222.
  23. Kye WH, Rim S, Kim CM, Lee JH, Ryu JW, Yeom BS, Park YJ. Experimental observation of characteristic relations of type-III intermittency in the presence of noise in a simple electronic circuit. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;68(3):036203. DOI: 10.1103/PhysRevE.68.036203.
  24. Kim C-M, Kwon OJ, Lee Eok-Kyun, Lee Hoyun. New characteristic relations in type-i intermittency. Phys. Rev. Lett. 1994;73(4):525–528. DOI: 10.1103/PhysRevLett.73.525.
  25. Kim C-M, Yim Geo-Su, Ryu Jung-Wan, Park Young-Jai. Characteristic relations of type-iii intermittency in an electronic circuit. Phys. Rev. Lett. 1998;80(24):5317. DOI: 10.1103/PhysRevLett.80.5317.
  26. Hirsch JE, Nauenberg M, Scalapino DJ. Intermittency in the presence of noise: A renormalization group formulation. Phys. Lett. A. 1982;87(8):391–393. DOI: 10.1016/0375-9601(82)90165-7.
  27. Crutchfield JP, Farmer JD, Huberman BA. Fluctuations and simple chaotic dynamics. Physics Reports. 1982;92(2):45–82. DOI: 10.1016/0370-1573(82)90089-8.
  28. Pikovsky AS, Rosenblum MG, Kurths J. Phase synchronisation in regular and chaotic systems. Int. J. Bifurcation and Chaos. 2000;10(10):2291–2305. DOI: 10.1142/S0218127400001481.
  29. Hramov AE, Koronovskii AA, Kurovskaya MK. Two types of phase synchronization destruction. Phys. Rev. E. 2007;75(3):036205. DOI: 10.1103/PhysRevE.75.036205.
  30. Pikovsky AS, Rosenblum MG, Osipov GV, Kurths J. Phase synchronization of chaotic oscillators by external driving. Physica D. 1997;104(4):219–238. DOI: 10.1016/S0167-2789(96)00301-6.
  31. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51(2):980–994. DOI: 10.1103/physreve.51.980.
  32. Pyragas K. Weak and strong synchronization of chaos. Phys. Rev. E. 1996;54(5):R4508-R4511. DOI: 10.1063/1.54216.
  33. Kocarev Lj, Parlitz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 1996;76(11):1816–1819. DOI: 10.1103/PhysRevLett.76.1816.
  34. Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E. 1996;53(5):4528–4535. DOI: 10.1103/PHYSREVE.53.4528.
  35. Fahy S, Hamann DR. Transition from chaotic to nonchaotic behavior in randomly driven systems. Phys Rev Lett. 1992;69(5):761–764. DOI: 10.1103/PhysRevLett.69.761.
  36. Maritan A, Banavar JR. Chaos, noise, and synchronization. Phys Rev Lett. 1994;72(10):1451–1454. DOI: 10.1103/PhysRevLett.72.1451.
  37. Toral R, Mirasso CR, Hernandez-Garcia E, Piro O. Analytical and numerical studies of noise-induced synchronization of chaotic systems. Chaos. 2001;11(3):665–673. DOI: 10.1063/1.1386397.
  38. Zhou C, Kurths J. Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys Rev Lett. 2002;88(23):230602. DOI: 10.1103/PhysRevLett.88.230602.
  39. Hramov AE, Koronovskii AA, Moskalenko OI. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? Phys. Lett. A. 2006;354(5–6):423–427. DOI: 10.1016/j.physleta.2006.01.079.
  40. Pikovsky AS, Rosenblum MG, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge: University Press; 2001. 433 p.
  41. Boccaletti S, Kurths J, Osipov GV, Valladares DL, Zhou CT. The synchronization of chaotic systems. Physics Reports. 2002;366(1-2):1–101. DOI: 10.1016/S0370-1573(02)00137-0.
  42. Hramov AE, Koronovskii AA. Generalized synchronization: a modified system approach. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(6):067201. DOI: 10.1103/PhysRevE.71.067201.
  43. Hramov AE, Koronovskii AA. and Moskalenko O.I. Generalized synchronization onset. Europhysics Letters. 2005;72(6):901–907. DOI: 10.1209/epl/i2005-10343-4. DOI: 10.1209/epl/i2005-10343-4.
  44. Hramov AE, Koronovskii AA, Ponomarenko VI, Prokhorov MD. Detecting synchronization of self-sustained oscillators by external driving with varying frequency. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;73(2):026208. DOI: 10.1103/PhysRevE.73.026208.
  45. Hramov AE, Koronovskii AA, Ponomarenko VI, Prokhorov MD. Detection of synchronization from univariate data using wavelet transform. Phys Rev E Stat Nonlin Soft Matter Phys. 2007;75(5):056207. DOI: 10.1103/PhysRevE.75.056207.
Received: 
29.07.2009
Accepted: 
29.07.2009
Published: 
30.10.2009
Short text (in English):
(downloads: 91)