ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Akopov A. A., Astakhov V. V., Shabunin A. V. Dynamics оf coupled maps modelling neuron behaviour. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 1, pp. 19-35. DOI: 10.18500/0869-6632-2003-11-1-19-35

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

Dynamics оf coupled maps modelling neuron behaviour

Akopov Artem Aleksandrovich, Saratov State University
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Shabunin Aleksej Vladimirovich, Saratov State University

Synchronization phenomenon in a system of two coupled neuron maps is considered. This system possess rich behaviour with developed multistability. Performed two-parametric analysis оf bifurcations demonstrates that loss of complete chaotic synchronization and multistability formation are based on the same bifurcational mechanisms.  

Key words: 
The authors are grateful to the Civilian Research Development Foundation (CRDF, grant CES-006) and the Russian Foundation for Basic Research (grant 00-02-17512) for partial funding of this work
  1. Fujisaka H, Yamada Т. Stability theory оf synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 1983;69(1):32–47. DOI: 10.1143/PTP.69.32.
  2. Pikovsky AS. On the interaction of strange attractors. Z. Phys. B. 1984;55(2):149–154. DOI: 10.1007/BF01420567.
  3. Kuznetsov SP. Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophys. Quantum Electron. 1985;28(8):681–695. DOI: 10.1007/BF01035195
  4. Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 1986;29(9):795–803. DOI: 10.1007/BF01034476.
  5. Ресога LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821–824. DOI: 10.1103/PhysRevLett.64.821.
  6. Astakhov VV, Bezruchko VP, Ponomarenko VI, Seleznev EP. Quasi-homogeneous stochastic motions and their destruction in a system of coupled nonlinear oscillators. Radiophys. Quantum Electron. 1988;31(5):627–630 (in Russian).
  7. Astakhov VV, Bezruchko BP, Gulyaev YP, Seleznev EP. Multistable states in dissipatively coupled Feigenbaum systems. Sov. Tech. Phys. Lett. 1989;15(3):60–65 (in Russian).
  8. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Oscillation modes and their evolution in dissipatively coupled Feigenbaum systems. Sov. Phys. Tech. Phys. 1990;60(10):19–26 (in Russian).
  9. Astakhov VV, Shabunin AB, Anishchenko VS. Spectral patterns during the formation of multistability in coupled oscillators with period doubling. J. Commun. Technol. Electron. 1997;42(8):974–981 (in Russian).
  10. Astakhov V, Shabunin А, Kapitaniak T, Anishchenko V. Loss оf chaos synchronization through the sequence оf bifurcations оf saddle periodic orbits. Phys. Rev. Lett. 1997;79(6):1014–1017. DOI: 10.1103/PhysRevLett.79.1014.
  11. Astakhov V, Hasler M, Kapitaniak T, Shabunin А, Anishchenko V. Effect оf parameter mismatch оn thе mechanism оf chaos synchronization loss in coupled system. Phys. Rev. E. 1998;58(5):5620–5628. DOI: 10.1103/PhysRevE.58.5620.
  12. Astakhov VB, Shabunin AB, Anishchenko VS. Mechanisms of destruction of chaotic synchronization in a system of coupled cubic mappings. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(2–3):3–11 (in Russian).
  13. Astakhov V, Shabunin А, Uhm W, Кim S. Multistability formation and synchronization loss in coupled Henon maps: Two sides of the single bifurcational mechanism. Phys. Rev. Е. 2001;63(5):056212. DOI: 10.1103/PhysRevE.63.056212.
  14. Foss J, Longtin А, Mensour B, Milton J. Multistability and delayed recurrent loops. Phys. Rev. Lett. 1996;76(4):708–711. DOI: 10.1103/PhysRevLett.76.708.
  15. Foss J, Moss F, Milton J. Noise, multistability, аnd delayed recurrent loops. Phys. Rev. Е. 1997;55(4):4536–4543. DOI: 10.1103/PhysRevE.55.4536.
  16. Pasemann Е. A simple chaotic neuron. Physica D. 1997;104(2):205–211. DOI: 10.1016/S0167-2789(96)00239-4.
  17. Pasemann F. Synchronized chaos and other coherent states for two coupled neurons. Physica D. 1999;128(2–4):236–249. DOI: 10.1016/S0167-2789(98)00300-5.
  18. Ashwin P, Buescu J, Stewart I. Bubbling of attractors ап synchronization оf chaotic oscillators. Phys. Lett А. 1994;193(2):126–139. DOI: 10.1016/0375-9601(94)90947-4.
  19. Venkataramani SC, Hunt BR, Ott Е. Bubbling transition. Phys. Rev. E. 1996;54(2):1346–1360. DOI: 10.1103/PhysRevE.54.1346.
  20. Pikovsky AS, Grassberger P. Symmetry breaking bifurcations for coupled chaotic attractors. J. Phys. А. Math. Gen. 1991;24(19):4587. DOI: 10.1088/0305-4470/24/19/022.
  21. Alexander JC, Kan I, Yorke JA, You Z. Riddled basins. Int. J. Bifurc. Chaos. 1992;2(4):795–813. DOI: 10.1142/S0218127492000446.
Available online: