ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Akopov A. A., Astakhov V. V., Shabunin A. V. Dynamics оf coupled maps modelling neuron behaviour. Izvestiya VUZ. Applied Nonlinear Dynamics, 2003, vol. 11, iss. 1, pp. 19-35. DOI: 10.18500/0869-6632-2003-11-1-19-35

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
537.86

Dynamics оf coupled maps modelling neuron behaviour

Autors: 
Akopov Artem Aleksandrovich, Saratov State University
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Shabunin Aleksej Vladimirovich, Saratov State University
Abstract: 

Synchronization phenomenon in a system of two coupled neuron maps is considered. This system possess rich behaviour with developed multistability. Performed two-parametric analysis оf bifurcations demonstrates that loss of complete chaotic synchronization and multistability formation are based on the same bifurcational mechanisms.  

Key words: 
Acknowledgments: 
The authors are grateful to the Civilian Research Development Foundation (CRDF, grant CES-006) and the Russian Foundation for Basic Research (grant 00-02-17512) for partial funding of this work
Reference: 
  1. Fujisaka H, Yamada Т. Stability theory оf synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 1983;69(1):32–47. DOI: 10.1143/PTP.69.32.
  2. Pikovsky AS. On the interaction of strange attractors. Z. Phys. B. 1984;55(2):149–154. DOI: 10.1007/BF01420567.
  3. Kuznetsov SP. Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophys. Quantum Electron. 1985;28(8):681–695. DOI: 10.1007/BF01035195
  4. Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 1986;29(9):795–803. DOI: 10.1007/BF01034476.
  5. Ресога LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821–824. DOI: 10.1103/PhysRevLett.64.821.
  6. Astakhov VV, Bezruchko VP, Ponomarenko VI, Seleznev EP. Quasi-homogeneous stochastic motions and their destruction in a system of coupled nonlinear oscillators. Radiophys. Quantum Electron. 1988;31(5):627–630 (in Russian).
  7. Astakhov VV, Bezruchko BP, Gulyaev YP, Seleznev EP. Multistable states in dissipatively coupled Feigenbaum systems. Sov. Tech. Phys. Lett. 1989;15(3):60–65 (in Russian).
  8. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Oscillation modes and their evolution in dissipatively coupled Feigenbaum systems. Sov. Phys. Tech. Phys. 1990;60(10):19–26 (in Russian).
  9. Astakhov VV, Shabunin AB, Anishchenko VS. Spectral patterns during the formation of multistability in coupled oscillators with period doubling. J. Commun. Technol. Electron. 1997;42(8):974–981 (in Russian).
  10. Astakhov V, Shabunin А, Kapitaniak T, Anishchenko V. Loss оf chaos synchronization through the sequence оf bifurcations оf saddle periodic orbits. Phys. Rev. Lett. 1997;79(6):1014–1017. DOI: 10.1103/PhysRevLett.79.1014.
  11. Astakhov V, Hasler M, Kapitaniak T, Shabunin А, Anishchenko V. Effect оf parameter mismatch оn thе mechanism оf chaos synchronization loss in coupled system. Phys. Rev. E. 1998;58(5):5620–5628. DOI: 10.1103/PhysRevE.58.5620.
  12. Astakhov VB, Shabunin AB, Anishchenko VS. Mechanisms of destruction of chaotic synchronization in a system of coupled cubic mappings. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(2–3):3–11 (in Russian).
  13. Astakhov V, Shabunin А, Uhm W, Кim S. Multistability formation and synchronization loss in coupled Henon maps: Two sides of the single bifurcational mechanism. Phys. Rev. Е. 2001;63(5):056212. DOI: 10.1103/PhysRevE.63.056212.
  14. Foss J, Longtin А, Mensour B, Milton J. Multistability and delayed recurrent loops. Phys. Rev. Lett. 1996;76(4):708–711. DOI: 10.1103/PhysRevLett.76.708.
  15. Foss J, Moss F, Milton J. Noise, multistability, аnd delayed recurrent loops. Phys. Rev. Е. 1997;55(4):4536–4543. DOI: 10.1103/PhysRevE.55.4536.
  16. Pasemann Е. A simple chaotic neuron. Physica D. 1997;104(2):205–211. DOI: 10.1016/S0167-2789(96)00239-4.
  17. Pasemann F. Synchronized chaos and other coherent states for two coupled neurons. Physica D. 1999;128(2–4):236–249. DOI: 10.1016/S0167-2789(98)00300-5.
  18. Ashwin P, Buescu J, Stewart I. Bubbling of attractors ап synchronization оf chaotic oscillators. Phys. Lett А. 1994;193(2):126–139. DOI: 10.1016/0375-9601(94)90947-4.
  19. Venkataramani SC, Hunt BR, Ott Е. Bubbling transition. Phys. Rev. E. 1996;54(2):1346–1360. DOI: 10.1103/PhysRevE.54.1346.
  20. Pikovsky AS, Grassberger P. Symmetry breaking bifurcations for coupled chaotic attractors. J. Phys. А. Math. Gen. 1991;24(19):4587. DOI: 10.1088/0305-4470/24/19/022.
  21. Alexander JC, Kan I, Yorke JA, You Z. Riddled basins. Int. J. Bifurc. Chaos. 1992;2(4):795–813. DOI: 10.1142/S0218127492000446.
Received: 
26.06.2002
Accepted: 
12.05.2003
Available online: 
10.11.2023
Published: 
30.05.2003