For citation:
Kasatkin D. V., Nekorkin V. I. Dynamics of a network of interacting phase oscillators with dynamic couplings. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 4, pp. 58-70. DOI: 10.18500/0869-6632-2015-23-4-58-70
Dynamics of a network of interacting phase oscillators with dynamic couplings
We investigate dynamical states formed in a network of coupled phase oscillators in which strength of interactions between oscillators evolve dynamically depending on their relative phases. The feature of the system is co-evolution of coupling weights and states of elements. It is ascertained that depending on the parameters the network exhibit several types of behavior: globally synchronized state, two-cluster and multi-cluster states, various synchronized states with a fixed phase relationship between oscillators and desynchronized state.
- Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Berlin: Springer, 1984. 158 p.
- Strogatz S.H. Exploring complex networks // Nature. 2001. Vol. 410. P. 268–276.
- Dorfler F., Bullo F. Synchronization in complex networks of phase oscillators: A survey // Automatica. 2014. Vol. 50. P. 1539–1564.
- Acebron J.A., Bonilla L.L., Perez Vicente C.J., Ritort F. and Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena // Reviews of Modern Physics. 2005. Vol. 77, № 1. P. 137.
- Pikovsky A., Rosenblum M. Dynamics of globally coupled oscillators: Progress and perspectives // Chaos. 2015. Vol. 25, № 9. P. 097616.
- Gomes-Gardenes J., Moreno Y., Arenas A. Synchronizability determined by coupling strengths and topology on complex networks // Physical Review E. 2007. Vol. 75, № 6. P. 066106.
- Stout J., Whiteway M., Ott E., Girvan M., Antonsen T.M. Local synchronization in complex networks of coupled oscillators // Chaos. 2011. Vol. 21, № 2. P. 025109.
- Strogatz S.H., Mirollo R.E. Stability of incoherence in a population of coupled oscillators // J. of Statistical Physics. 1991. Vol. 63, № 3-4. P. 613.
- Brede M. Synchronizability determined by coupling strengths and topology on complex networks // Physics Letters A. 2008. Vol. 372, № 15. P. 2618.
- Hong H., Strogatz S.H. Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators // Physical Review Letters. 2011. Vol. 106, № 5. P. 054102.
- Kloumann I.M., Lizarraga I.M., Strogatz S.H. Phase diagram for the Kuramoto model with van Hemmen interactions // Physical Review E. 2014. Vol. 89, № 1. P. 012904.
- Earl M.G., Strogatz S.H. Synchronization in oscillator networks with delayed coupling: A stability criterion // Physical Review E. 2003. Vol. 67, № 3. P. 036204.
- Nordenfelt A., Wagemakers A., Sanjuan M.A.F. Frequency dispersion in the time-delayed Kuramoto model // Physical Review E. 2014. Vol. 89, № 3. P. 032905.
- Aoki T., Aoyagi T. Self-organized network of phase oscillators coupled by activity-dependent interactions // Physical Review E. 2011. Vol. 84, № 6. P. 066109.
- Gutierrez R., Amann A., Assenza S., Gomes-Gardenes J., Latora V., Boccaletti S. Emerging meso- and macroscales from synchronization of adaptive networks // Physical Review Letters. 2011. Vol. 107, № 23. P. 234103.
- Assenza S., Gutierrez R., Gomes-Gardenes J., Latora V., Boccaletti S. Emergence of structural patterns out of synchronization in networks with competitive interactions // Scientific Reports. 2011. Vol. 1. P. 1–8.
- Chandrasekar V.K., Sheeba J.H., Subash B., Lakshmanan M., Kurths J. Adaptive coupling induced multi-stable states in complex networks // Physica D. 2014. Vol. 267. P. 36.
- Ren Q., He M., Yu X., Long Q, Zhao J. The adaptive coupling scheme and heterogeneity in intrinsic frequency and degree distributions of the complex networks // Physics Letters A. 2014. V. 378, № 3. P. 139.
- Kasatkin D.V., Nekorkin V.I. Dynamics of phase oscillators with plastic couplings // Radiophysics and Quantum Electronics. 2015. (in press)
- 2261 reads