ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Vadivasova T. E., Sosnovtseva O. V. Dynamics of the chain of coupled circle maps with quasiperiodic force. Izvestiya VUZ. Applied Nonlinear Dynamics, 1997, vol. 5, iss. 1, pp. 42-53. DOI: 10.18500/0869-6632-1997-5-1-42-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Dynamics of the chain of coupled circle maps with quasiperiodic force

Autors: 
Vadivasova Tatjana Evgenevna, Saratov State University
Sosnovtseva Olga Vladimirovna, Danmarks Tekniske Universitet
Abstract: 

We analyze a spatio—temporal evolution of quasiperiodic regimes in the chain of coupled circle maps. The mechanisms of appearance of strange nonchaotic dynamics and properties of nonregular attractors are investigated.

Key words: 
Acknowledgments: 
The work was partially financed by a grant from the State Committee for Higher Education of Russia for fundamental natural sciences (grant 95-0-8.3-66).
Reference: 
  1. Grebogi C, Ott E, Pelikan S, Yorke JA. Strange attractors that are not chaotic. Physica D. 1984;13(1-2):261-268. DOI: 10.1016/0167-2789(84)90282-3.
  2. Romeiras FJ, Bondeson А, Ott E, Antonsen TM, Grebogi С. Quasiperiodically forced dynamical systems with strange nonchaotic attractors. Physica D. 1987;26(1-3):277-294. DOI: 10.1016/0167-2789(87)90229-6.
  3. Romeiras FJ, Ott Е. Strange nonchaotic attractors оf the damped pendulum with quasiperiodic forcing. Phys.Rev. A. 1987;35(10):4404-4413. DOI: 10.1103/physreva.35.4404.
  4. Ding M, Grebogi C, Ott Е. Evolution of attractors in quasiperiodically foced systems: From quasiperiodic to strange nonchaotic to chaotic. Phys.Rev. A. 1989;З9(5):2593-2598. DOI: 10.1103/physreva.39.2593.
  5. Ding M, Grebogi C, Оtt Е. Dimension оf strange nonchaotic attractors. Phys. Lett. A. 1989;137(4-5):167–172. DOI: 10.1016/0375-9601(89)90204-1.
  6. Kapitaniak T, Ponce E, Wojewoda J. Route to chaos via strange nonchaotic attractors.  J. Phys. A. 1990;23(8):L383-L387. DOI: 10.1088/0305-4470/23/8/006.
  7. Kapitaniak T. On strange nonchaotic attractors and their dimensions. Chaos, solitons and fractals. 1991;1(1):67-77. DOI: 10.1016/0960-0779(91)90056-F.
  8. Heagy JF, Hammel SM. The birth of strange nonchaotic attractors. Physica D. 1994;70(1-2):140-153. DOI: 10.1016/0167-2789(94)90061-2.
  9. Pikovsky AS, Feudel U. Characterizing strange nonchaotic attractors. Preprint Nld—002. Universitat Potsdam, 1994.
  10. Pikovsky AS, Feudel U. Correlations and spectra of strange nonchaotic attractors. J. Phys. A. 1994;27(15):5209-5219. DOI: 10.1088/0305-4470/27/15/020.
  11. Feudel U, Kurths J, Pikovsky AS. Strange non-chaotic attractor in а quasiperiodically forced circle mар. Physica D. 1995;88(3-4):176-186. DOI: 10.1016/0167-2789(95)00205-I.
  12. Anishchenko VS, Vadivasova TE, Sosnovtseva OV. Mechanisms of destruction of a strange non-chaotic attractor in the mapping of a ring with quasi-periodic impact. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(3):34-43. (in Russian).
  13. Anishchenko VS, Vadivasova TE, Sosnovtseva OV. Mechanisms оf ergodic torus destruction and appearance оf strange nonchaotic attractor. Phys. Rev. E. 1996;53(5):4451-4456. DOI: 10.1103/physreve.53.4451.
  14. Anishchenko VS, Vadivasova TE, Sosnovtseva OV. Strange nonchaotic attractors in autonomous and periodically driven systems. Phys. Rev. E. 1996;54(4):3231-3234. DOI: 10.1103/physreve.54.3231.
  15. Newhouse S, Ruelle D, Takens F. Occurence of strange axiom А attractors near quasiperiodic flows оп T^m, m>=3. Commun. Math. Phys. 1978;64:35-40. DOI: 10.1007/BF01940759.
  16. Rend D, Ostlund S, Sethna J, Siggia ED. Universal transition from quasiperiodicity to chaos in dissipative systems. Phys. Rev. Lett. 1982;49(2):132-135. DOI: 10.1103/PhysRevLett.49.132.
  17. Kuznetsov SP. On the critical behavior of one-dimensional chains. Tech. Phys. Lett. 1983;9(2):94-98. (in Russian).
  18. Gaponov-Grekhov AV, Rabinovitch МI, Starobinets IМ. Dynamic model of the spatial development of turbulence. JETP Lett. 1984;39(12):688-691.
  19. Kuznetsov SP. Model description of a chain of coupled dynamic systems near order-disorder phase transitions. Soviet. Phys. J. 1984;27(6):522-530. DOI: 10.1007/BF00901875.
  20. Kuznetsov SP, Pikovskii AS. Universality of period doubling bifurcation in one-dimensional dissipative media. Radiophys. Quantum. Electron. 1985;28(3):205-214. DOI: 10.1007/BF01035479.
  21. Anishchenko VS, Postnov DE, Safonova MA. Dimension and physical properties of chaotic attractors of the chain of connected generators. Tech. Phys. Lett. 1985;11(24):1505-1509. (in Russian).
  22. Anishchenko VS, Aranson IS, Postnov DE, Rabinovich MI. Spatial synchronization and bifurcation of chaos in the chain of connected generators. Sov. Phys. Doklady. 1986;286(5):1120-1124. (in Russian).
  23. Crutchfield JP, Kaneko K. Phenomenology оf spatio—temporal chaos. In: Direction in Chaos. Singapore: World Scientific; 1987. P. 272-353.
  24. Kaneko K. Spatio—temporal chaos in оnе- and two—dimensional coupled mар lattices. Physica D. 1989;37(1-3):60-82. DOI: 10.1016/0167-2789(89)90117-6.
  25. Kuznetsov АP, Kuznetsov SP. Spatial structures in dissipative media at the threshold of chaos. Radiophys. Quantum. Electron. 1991;34(2):124-128. DOI: 10.1007/BF01045518.
  26. Kuznetsov SP. University and scaling in two—dimensional coupled map lattices. Chaos, Solitons and Fractals. 1992;2(3): 281–301. DOI: 10.1016/0960-0779(92)90037-N.
  27. Belykh VN, Mosekilde E. One—dimensional map lattices: Synchronisation, bifurcations, and chaotic structures. Phys. Rev. E. 1996;54(4):3196-3203. DOI: 10.1103/physreve.54.3196.
Received: 
05.02.1997
Accepted: 
25.02.1997
Published: 
18.05.1997