ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kuznetsov A. P., Paksjutov V. I. Dynamics of two nonidentical coupled self-sustained systems with period doublings on the example of Rossler oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 2, pp. 3-15. DOI: 10.18500/0869-6632-2006-14-2-3-15

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 103)
Article type: 

Dynamics of two nonidentical coupled self-sustained systems with period doublings on the example of Rossler oscillators

Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Paksjutov Vladimir Igorevich, Saratov State University

The system of two coupled Rossler oscillators is considered. Detailed investigation is carried out on the plane of parameters which control the period-doubling bifurcations in the subsystems. Dynamical regimes in different points of the control parameter plane are determined using the methods of the bifurcation plot and the highest nonzero Lyapunov exponent plot computation. The synchronization picture of two coupled Rossler oscillators is compared with synchronization pictures of more simple systems: two coupled Van der Pol oscillators and coupled logistic maps. The boundary structure of synchronization areas is investigated by calculation of the system multiplicators, and the sequence of codimension-two points is found.

Key words: 
  1. Anishchenko VS, Vadivasova IE, Astakhov VV. Nonlinear dynamics of chaotic and stochastic systems. Saratov: Saratov University Publishing; 1999. 367 p. (In Russian).
  2. Mosekilde E, Maistrenko Y, Postnov D. Chaos synchronization. Application to living systems. World Scientific Series on Nonlinear Science. Series A. Vol. 42. 2002. P. 440. DOI: 10.1142/4845.
  3. Jian-Min Yuan, Mingwhei Tung, Da Hsuan Feng, Lorenzo M. Narducci. Instability and irregular behaviour of coupled logistic equations. Phys. Rev. A. 1983;28(3):1662.
  4. Kuznetsov AP, Sedova JV, Sataev IR. Structure Of Control Parameters Space Of Nonidentical Coupled Systems With Period- Doublings. Izvestiya VUZ. Applied Nonlinear Dynamics. 2004;12(5):46–57.
  5. Reike C, Mosekilde E. Emergence of quasiperiodicity in symmetrically coupled, identical period-doubling systems. Phys. Rev. E52. 1995;52(2):1418–1435. DOI: 10.1103/PhysRevE.52.1418.
  6. Rasmussen J, Mosekilde E, Reick C. Bifurcations in two coupled Rossler systems. Mathematics and Computers in Simulation. 1996;40(3):247–270. DOI: 10.1016/0378-4754(95)00036-4.
  7. Ivanchenko MV, Osipov GA, Shalfeev VD. Hierarchies of regular and chaotic synchronization in the system of associated oscillators Ressler. Proceedings of the (sixth) scientific conference on radiophysics. Ed. AV. Yakimov. Nizhny Novgorod, 2002. P. 114. (In Russian).
  8. Kuznetsov SP. Dynamic chaos. Moscow: Fizmatlit; 2001. 296 p. (In Russian).
  9. Yanchuk S, Maistrenko Y, Mosekilde E. Loss of synchronization in coupled Rossler systems. Physica D. 2001;154(1-2):26–42. DOI: 10.1016/S0167-2789(01)00221-4.
  10. Yanchuk S, Kapitaniak T. Chaos-hyperchaos transition in coupled Rossler systems. Physics Letters A. 2001;290(3-4):139–144. DOI: 10.1016/S0375-9601(01)00651-X.
  11. Stagliano J, Wersinger J, Slaminka E. Doubling bifurcations of destroyed tori. Physica D. 1996;92(3-4):164–177.
  12. Kuznetsov AP, Paksjutov VI, Roman JP. Properties of synchronization in the system of nonidentical coupled van der Pol and van der Pol – Duffing oscillators. Broadband synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(4):3-15. DOI: 10.18500/0869-6632-2007-15-4-3-15.
  13. Kuznetsov SP, Sataev IR. Universality and scaling for the breakup of phase synchronization at the onset of chaos in a periodically driven Rössler oscillator. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;64(4):046214. DOI: 10.1103/PhysRevE.64.046214.
Short text (in English):
(downloads: 80)