ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Moskalenko O. I., Koronovskii A. A., Hramov A. E., Alekseev K. N., Balanov A. G. Effect of external periodic force on the dynamics of thecharge domains in semiconductor superlattice. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 3, pp. 143-153. DOI: 10.18500/0869-6632-2011-19-3-143-153

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 145)
Language: 
Russian
Article type: 
Article
UDC: 
517.9, 530.182, 621.38

Effect of external periodic force on the dynamics of thecharge domains in semiconductor superlattice

Autors: 
Moskalenko Olga Igorevna, Saratov State University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Alekseev Kirill Nikolaevich, Loughborough University
Balanov Aleksandr Gennadevich, Loughborough University
Abstract: 

Periodic external signal effect on the collective dynamics of charge in semiconductor superlattice is studied. It is shown, that periodically-oscillating external electrical field can synchronize the transport of domains of the high density of charge as well as oscillations of electrical current flowing through the superlattice. Synchronization tongues are occurred in the control parameter «frequency of electrical field – electrical field amplitude» plane, and the width of such tongues does not almost depend on the frequency of external field and proper frequency of the domain follow ratio. Synchronization is shown to be accompanied by the sharp increase of absorbtion on the frequency of external field.

Reference: 
  1. Wacker R. Semiconductor superlattices: a model system for nonlinear transport. Physics Reports. 2002;357(1):1–111. DOI: 10.1016/S0370-1573(01)00029-1.
  2. Keldysh LV. Properties of semiconductor superlattices. Soviet Physics, Solid State. 1962;4:2265 (in Russian).
  3. Esaki L, Tsu R. Superlattices and negative differential conductivity in semiconductors. IBM Journal of Research and Development. 1970;14(1):61–65. DOI: 10.1147/rd.141.0061.
  4. Schomburg E, Hofbeck K, Scheuerer R et al. Control of the dipole domain propagation in a GaAs/AlAs superlattice with a high-frequency field. Phys. Rev. B. 2002;65(15):155320. DOI: 10.1103/PhysRevB.65.155320.
  5. Jappsen AK, Wacker A, Scholl E, Schomburg E. High-frequency impedance of driven superlattices. J. Appl. Phys. 2002;92(6):3137–3140. DOI: 10.1063/1.1501756.
  6. Hyart T, Alekseev K, Thuneberg E. Bloch gain in dc-ac-driven semiconductor superlattices in the absence of electric domains. Phys. Rev. B. 2008;77(16):165330. DOI: 10.1103/PhysRevB.77.165330.
  7. Hyart T, Alexeeva NV, Mattas J, Alekseev K. Terahertz bloch oscillator with a modulated bias. Phys. Rev. Lett. 2009;102(14):140405. DOI: 10.1103/PhysRevLett.102.140405.
  8. Blekhman II. Synchronization in Nature and Technology. Moscow: Nauka; 1981. 440 p. (in Russian).
  9. Landa PS, Rosenblum MG. Synchronization and chaotization of oscillations in coupled self–oscillating systems. Appl. Mech. Rev. 1993;46(7):414–426. DOI: 10.1115/1.3120370.
  10. Anishchenko VS, Astakhov VV, Vadivasova TE, Neiman A, Schimansky-Geier L. Nonlinear Dynamics in Chaotic and Stochastic Systems. Berlin: Springer; 2007. 446 p. DOI: 10.1007/978-3-540-38168-6.
  11. Balanov AG, Janson NB, Postnov DE, Sosnovtseva OV. Synchronization: From Simple to Complex. Berlin: Springer; 2009. 426 p. DOI: 10.1007/978-3-540-72128-4.
  12. Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001;410(6825):277–284. DOI: 10.1038/35065745.
  13. Anishchenko VS, Balanov AG, Janson NB et al. Entrainment between heart rate and weak noninvasive forcing. Int. J. Bifurcat. Chaos. 2000;10(10):2339–2348. DOI: 10.1142/S0218127400001468.
  14. Parmananda P. Generalized synchronization of spatiotemporal chemical chaos. Phys. Rev. E. 1997;56(2):1595–1598. DOI: 10.1103/PhysRevE.56.1595.
  15. Blasiusc B, Stone L. Chaos and phase synchronization in ecological systems. Int. J. Bifurcat. Chaos. 2000;10(10):2361–2380. DOI: 10.1142/S0218127400001511.
  16. Palus M, Kurths J, Schwarz U et al. Is the solar activity cycle synchronized with the solar inertial motion? Int. J. Bifurcat. Chaos. 2000;10(11):2519–2526. DOI: 10.1142/S0218127400001766.
  17. Murali K, Lakshmanan M. Transmission of signals by synchronization in a chaotic van der Pol–Duffing oscillator. Phys. Rev. E. 1993;48(3):R1624–R1626. DOI: 10.1103/PhysRevE.48.R1624.
  18. Dmitriev AS, Panas AI. Dynamic Chaos: New Carriers of Information for Communication Systems. Moscow: Fizmatlit; 2002. 252 p. (in Russian).
  19. Anishchenko VS, Pavlov AN. Global reconstruction in application to multichannel communication. Phys. Rev. E. 1998;57(2):2455–2457. DOI: 10.1103/PhysRevE.57.2455.
  20. Pyragas K. Synchronisation of coupled time-delay systems: analytical estimations. Phys. Rev. E. 1998;58(3):3067–3071. DOI: 10.1103/PhysRevE.58.3067.
  21. Cuomo K, Oppenheim AV. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 1993;71(1):65–68. DOI: 10.1103/PhysRevLett.71.65.
  22. Koronovskii AA, Moskalenko OI, Hramov AE. On the use of chaotic synchronization for secure communication. Phys. Usp. 2009;52(12):1213–1238. DOI: 10.3367/UFNe.0179.200912c.1281.
  23. Trubetskov DI, Koronovsky AA, Khramov AE. Synchronization of Distributed Electron–Wave Self-Oscillatory Systems with a Backward Wave. Radiophysics and Quantum Electronics. 2004;47(5–6):305–331. DOI: 10.1023/B:RAQE.0000046307.62799.f2.
  24. Greenaway MT, Balanov AG, Scholl E, Fromhold TM. Controlling and enhancing terahertz collective electron dynamics in superlattices by chaos-assisted miniband transport. Phys. Rev. B. 2009;80(20):205318. DOI: 10.1103/PhysRevB.80.205318.
  25. Fromhold TM, Patane A, Bujkiewicz S et al. Chaotic electron diffusion through stochastic webs enhances current flow in superlattices. Nature. 2004;428(6984):726–730. DOI: 10.1038/nature02445.
  26. Balanov AG, Fowler D, Patane A et al. Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field. Phys. Rev. E. 2008;77(2):026209. DOI: 10.1103/PhysRevE.77.026209.
  27. Balanov AG, Koronovskii AA, Selskij AO, Hramov AE. Temperature effect on drift velocity of electrons in superlattice in electric and tilted magnetic fields. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(3):128–139 (in Russian). DOI: 10.18500/0869-6632-2010-18-3-128-139.
  28. Ignatov AA, Shashkin VI. Bloch oscillations of electrons and instability of space charge waves in semiconductor superlattices. J. Exp. Theor. Phys. 1987;93(3):935–943 (in Russian).
  29. Bass FG, Zorchenko VV, Shashora VI. Strack-cyclotron resonance in superlattice semiconductors. JETP Lett. 1980;31(6):345 (in Russian).
  30. Bass FG, Zorchenko VV, Shashora VI. On the theory of galvanomagnetic and high-frequency phenomena in semiconductors with a superlattice. Soviet Physics. Semiconductors. 1981;15:459 (in Russian).
  31. Shik AY. Superlattices - periodic semiconductor structures. Soviet Physics. Semiconductors. 1974;8:1841–1846 (in Russian).  
Received: 
17.12.2010
Accepted: 
04.04.2011
Published: 
29.07.2011
Short text (in English):
(downloads: 64)