ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Cherepantsev A. S. Effect of filtering in dynamic system parameters estimation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 6, pp. 47-55. DOI: 10.18500/0869-6632-2012-20-6-47-55

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 163)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9 + 519.254

Effect of filtering in dynamic system parameters estimation

Autors: 
Cherepantsev Aleksandr Sergeevich, Southern Federal University. Faculty of Natural Science and Humanities Education
Abstract: 

A question on the distortion of the dynamic system parameters estimation using a time variation of the single component after exposing recursive filters with different order and with different cut-off frequency is analyzed. The Lorenz system is used as a test dynamic system for comparative evaluation of the correlation dimension and the dimension of the system state vector in the case of recursive filtering.

Reference: 
  1. Malinetskii GG, Potapov AB. Modern Problems of Nonlinear Dynamics. Moscow: Editorial URSS; 2002. 360 p. (in Russian).
  2. Badii R, Broggi G, Derighetti B et al. Dimension increase in filtered chaotic signals. Physical Review Letters. 1988;60(11):979–982. DOI: 10.1103/PhysRevLett.60.979.
  3. Kaplan JL, Yorke JA. Chaotic behavior of multidimensional difference equations. Functional differential equations and approximations of fixed points. In: Peitgen HO, Walther HO, editors. Lecture Notes in Mathematics. Vol. 730. Berlin: Springer-Verlag; 1979. P. 204–227. DOI: 10.1007/BFb0064319.
  4. Kuznetsov SP. Dynamic Chaos. Moscow: Fizmatlit; 2001. 295 p. (in Russian).
  5. Zhu L, Lai Y, Hoppensteadt F et al. Numerical and experimental investigation of the effect of filtering on chaotic symbolic dynamics. Chaos. 2003;13(1):410–419. DOI: 10.1063/1.1520090.
  6. Broomhead D, Huke J, Muldoon M. Linear filters and non-linear systems. Journal Royal Statistical Society. 1992;54(2):373–382.
  7. Sauer T, Yorke J. Are the dimensions of a set and its image equal under typical smooth functions? Ergodic Theory and Dynamical Systems. 1997;17(4):941–956. DOI: 10.1017/S0143385797086252.
  8. Otnes RK, Enochson L. Applied Time Series Analysis. Vol. 1. Basic Techniques. New York: Wiley; 1978. 450 p.
  9. Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from chaotic signal. Physical Review A. 1983;28(4):2591–2593. DOI: 10.1103/PhysRevA.28.2591.
Received: 
12.09.2012
Accepted: 
30.10.2012
Published: 
29.03.2013
Short text (in English):
(downloads: 76)