ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Cherepantsev A. S. Effect of filtering in dynamic system parameters estimation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 6, pp. 47-55. DOI: 10.18500/0869-6632-2012-20-6-47-55

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 148)
Article type: 
517.9 + 519.254

Effect of filtering in dynamic system parameters estimation

Cherepantsev Aleksandr Sergeevich, Southern Federal University. Faculty of Natural Science and Humanities Education

A question on the distortion of the dynamic system parameters estimation using a time variation of the single component after exposing recursive filters with different order and with different cut-off frequency is analyzed. The Lorenz system is used as a test dynamic system for comparative evaluation of the correlation dimension and the dimension of the system state vector in the case of recursive filtering.

  1. Malinetskii GG, Potapov AB. Modern Problems of Nonlinear Dynamics. Moscow: Editorial URSS; 2002. 360 p. (in Russian).
  2. Badii R, Broggi G, Derighetti B et al. Dimension increase in filtered chaotic signals. Physical Review Letters. 1988;60(11):979–982. DOI: 10.1103/PhysRevLett.60.979.
  3. Kaplan JL, Yorke JA. Chaotic behavior of multidimensional difference equations. Functional differential equations and approximations of fixed points. In: Peitgen HO, Walther HO, editors. Lecture Notes in Mathematics. Vol. 730. Berlin: Springer-Verlag; 1979. P. 204–227. DOI: 10.1007/BFb0064319.
  4. Kuznetsov SP. Dynamic Chaos. Moscow: Fizmatlit; 2001. 295 p. (in Russian).
  5. Zhu L, Lai Y, Hoppensteadt F et al. Numerical and experimental investigation of the effect of filtering on chaotic symbolic dynamics. Chaos. 2003;13(1):410–419. DOI: 10.1063/1.1520090.
  6. Broomhead D, Huke J, Muldoon M. Linear filters and non-linear systems. Journal Royal Statistical Society. 1992;54(2):373–382.
  7. Sauer T, Yorke J. Are the dimensions of a set and its image equal under typical smooth functions? Ergodic Theory and Dynamical Systems. 1997;17(4):941–956. DOI: 10.1017/S0143385797086252.
  8. Otnes RK, Enochson L. Applied Time Series Analysis. Vol. 1. Basic Techniques. New York: Wiley; 1978. 450 p.
  9. Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from chaotic signal. Physical Review A. 1983;28(4):2591–2593. DOI: 10.1103/PhysRevA.28.2591.
Short text (in English):
(downloads: 74)