For citation:
Ponomarenko V. I., Prokhorov M. D., Seleznev E. P. Estimation of characteristics of self-oscillating time-delay systems in periodic regime. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 6, pp. 86-92. DOI: 10.18500/0869-6632-2007-15-6-86-92
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 345)
Language:
Russian
Heading:
Article type:
Article
UDC:
537.86
Estimation of characteristics of self-oscillating time-delay systems in periodic regime
Autors:
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Prokhorov Mihail Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Seleznev Evgeny Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract:
A method is proposed for reconstructing time-delay systems in periodic regime of oscillations. The method is based on the analysis of these systems response to a weak periodic pulse driving. It is shown that proposed method with using of weak driving allows one to recover the delay time of a ring self-oscillating system with time-delayed feedback and to define the order of a model delay-differential equation.
Key words:
Reference:
- Hale JK, Lunel SMV. Introduction to Functional Differential Equations. New York: Springer; 1993.
- Bunner MJ, Popp M, Meyer Th, Kittel A, Rau U, Parisi J. Recovery of scalar time-delay systems from time series. Phys. Lett. A. 1996;211:345–349.
- Voss H, Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations. Phys. Lett. A. 1997;234:336–344. DOI: 10.1016/S0375-9601(97)00598-7.
- Hegger R, Bunner MJ, Kantz H, Giaquinta A. Identifying and modeling delay feedback systems. Phys. Rev. Lett. 1998;81:558–561. DOI: 10.1103/PhysRevLett.81.558.
- Bezruchko BP, Karavaev AS, Ponomarenko VI, Prokhorov MD. Reconstruction of time-delay systems from chaotic time series. Phys. Rev. E. 2001;64:056216. DOI: 10.1103/PhysRevE.64.056216.
- Horbelt W, Timmer J, Voss HU. Parameter estimation in nonlinear delayed feedback systems from noisy data. Phys. Lett. A. 2002;299:513–521. DOI: 10.1016/S0375-9601(02)00748-X.
- Udaltsov VS, Larger L, Goedgebuer JP, Locquet A, Citrin DS. Time delay identification in chaotic cryptosystems ruled by delay-differential equations. J. of Optical Technology. 2005;72:373–377. DOI: 10.1364/JOT.72.000373.
- Ortin S, Gutierrez JM, Pesquera L, Vasquez H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction. Physica A. 2005;351:133–141. DOI: 10.1016/j.physa.2004.12.015.
- Prokhorov MD, Ponomarenko VI, Karavaev AS, Bezruchko BP. Reconstruction of time-delayed feedback systems from time series. Physica D. 2005;203:209–233. DOI: 10.1016/j.physd.2005.03.013.
- Rubanik VP. Oscillations of Quasi-Linear Systems with Delay. Moscow: Nauka; 1969. (in Russian).
- Ringwood JV, Malpas SC. Slow oscillations in blood pressure via a nonlinear feedback model. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 2001;280:1105–1115. DOI: 10.1152/ajpregu.2001.280.4.R1105.
- Bocharov GA, Rihan FA. Numerical modelling in biosciences using delay differential equations. J. Comp. Appl. Math. 2000;125:183–199. DOI: 10.1016/S0377-0427(00)00468-4.
- Bezruchko BP, Dikanev TV, Smirnov DA. Role of transient processes for reconstruction of model equations from time series. Phys. Rev. E. 2001;64:036210. DOI: 10.1103/PhysRevE.64.036210.
- Harkevich AA. Struggle with interference. Moscow: Nauka; 1965. (in Russian).
- Baskakov SI. Radio Circuits and Signals. Moscow: Higher School; 2000. (in Russian).
- Voishvillo GV. Amplifying devices. Moscow: Radio and Communications; 1983. (in Russian).
Received:
29.08.2007
Accepted:
29.08.2007
Published:
30.01.2008
Journal issue:
Short text (in English):
(downloads: 106)
- 1838 reads