Для цитирования:
Пономаренко В. И., Прохоров М. Д., Селезнев Е. П. Оценка характеристик автоколебательных систем с запаздыванием в периодическом режиме // Известия вузов. ПНД. 2007. Т. 15, вып. 6. С. 86-92. DOI: 10.18500/0869-6632-2007-15-6-86-92
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 345)
Язык публикации:
русский
Рубрика:
Тип статьи:
Научная статья
УДК:
537.86
Оценка характеристик автоколебательных систем с запаздыванием в периодическом режиме
Авторы:
Пономаренко Владимир Иванович, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Прохоров Михаил Дмитриевич, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Селезнев Евгений Петрович, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Аннотация:
Предложен метод восстановления систем с запаздыванием, находящихся в периодическом режиме колебаний. Метод основан на анализе отклика этих систем на слабое периодическое импульсное воздействие. Показано, что при помощи слабого внешнего воздействия предложенный метод позволяет восстановить время задержки в кольцевой автоколебательной системе с запаздыванием и определить порядок модельного дифференциального уравнения с запаздывающим аргументом.
Ключевые слова:
Список источников:
- Hale J.K., Lunel S.M.V. Introduction to Functional Differential Equations. New York: Springer, 1993.
- Bunner M.J., Popp M., Meyer Th., Kittel A., Rau U., Parisi J. Recovery of scalar time-delay systems from time series // Phys. Lett. A. 1996. Vol. 211. P. 345.
- Voss H., Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations // Phys. Lett. A. 1997. Vol. 234. P. 336.
- Hegger R., Bunner M.J., Kantz H., Giaquinta A. Identifying and modeling delay feedback systems // Phys. Rev. Lett. 1998. Vol. 81. P. 558.
- Bezruchko B.P., Karavaev A.S., Ponomarenko V.I., Prokhorov M.D. Reconstruction of time-delay systems from chaotic time series // Phys. Rev. E. 2001. Vol. 64. 056216.
- Horbelt W., Timmer J., Voss H.U. Parameter estimation in nonlinear delayed feedback systems from noisy data // Phys. Lett. A. 2002. Vol. 299. P. 513.
- Udaltsov V.S., Larger L., Goedgebuer J.P., Locquet A., Citrin D.S. Time delay identification in chaotic cryptosystems ruled by delay-differential equations // J. of Optical Technology. 2005. Vol. 72. P. 373.
- Ortin S., Gutierrez J.M., Pesquera L., Vasquez H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction // Physica A. 2005. Vol. 351. P. 133.
- Prokhorov M.D., Ponomarenko V.I., Karavaev A.S., Bezruchko B.P. Reconstruction of time-delayed feedback systems from time series // Physica D. 2005. Vol. 203. P. 209.
- Рубаник В.П. Колебания квазилинейных систем с запаздыванием. М.: Наука, 1969.
- Ringwood J.V., Malpas S.C. Slow oscillations in blood pressure via a nonlinear feedback model // Am. J. Physiol. Regulatory Integrative Comp. Physiol. 2001. Vol. 280. P. 1105.
- Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comp. Appl. Math. 2000. Vol. 125. P. 183.
- Bezruchko B.P., Dikanev T.V., Smirnov D.A. Role of transient processes for reconstruction of model equations from time series // Phys. Rev. E. 2001. Vol. 64. 036210.
- Харкевич А.А. Борьба с помехами. М.: Наука, 1965.
- Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 2000.
- Войшвилло Г.В. Усилительные устройства. М.: Радио и связь,1983.
Поступила в редакцию:
29.08.2007
Принята к публикации:
29.08.2007
Опубликована:
30.01.2008
Краткое содержание:
(загрузок: 106)
- 1831 просмотр