ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Brazhe R. A., Kudelin O. N. Experimental realization of Lorenz model of liquid’s convective instability in vertical toroidal loop. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 6, pp. 88-99. DOI: 10.18500/0869-6632-2006-14-6-88-99

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 140)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
538.915:532.529.2

Experimental realization of Lorenz model of liquid’s convective instability in vertical toroidal loop

Autors: 
Brazhe Rudolf Aleksandrovich, Federal State Budget Educational Institution of Higher Professional Education "Ulyanovsk State Technical University"
Kudelin Oleg Nikolaevich, JSC "Scientific and Production Association" Mars "
Abstract: 

Stable and unstable regimes of glycerine convection in vertical toroidal loop are investigated experimentally. The results of Fourier-analysis, DFA, wavelet-, and correlation analysis of liquid’s motion peculiarities are presented. Chaotic attractor with Lorenzattractor signs is constructed.

Key words: 
Reference: 
  1. Lorenz EN. Deterministic nonperiodic flow. J. Atmos. Sci. 1963;20(2):130–141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  2. Welander P. On the oscillatory instability of a differentially heated loop. J. Fluid Mech. 1967;29(1):17–30. DOI: 10.1017/S0022112067000606.
  3. Creveling HF. et al. Stability characteristics of a single-phase free convection loop. J. Fluid Mech. 1975;67(1):65–84. DOI: 10.1017/S0022112075000171.
  4. Gorman M, Widman PJ, Robins KA. Chaotic flow regimes in a convective loop. Phys. Rev. Lett. 1984;52(25):2241–2244. DOI: 10.1103/PHYSREVLETT.52.2241.
  5. Wang Y, Singer I, Bau H. Controlling chaos in thermal convecting loop. J. Fluid Mech. 1992;237(1):479–498. DOI: 10.1017/S0022112092003501.
  6. Drozdov SM. Experimental study of liquid convection in a closed toroidal channel. Fluid Dynamics. 1995;4:20–28.
  7. Drozdov SM. Simulation of the Onset of Nonstationarity and Chaos in a Hydrodynamic System Governed by a Small Number of Degrees of Freedom. Fluid Dynamics. 2001;36(1):26–38. DOI: 10.1023/A:1018863206798.
  8. Schreder M. Fractaly, chaos, power noises. Miniatures from infinite paradise. Izhevsk: RCD; 2001. 528 p. (In Russian).
  9. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994;49(2):1685–1689. DOI: 10.1103/physreve.49.1685.
  10. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82–87. DOI: 10.1063/1.166141.
  11. Astafieva NM. Wavelet analysis: basic theory and some applications. Phys. Usp. 1996;39(11):1085–1108. DOI: 10.3367/UFNr.0166.199611a.1145.
  12. Hamilton JD. Time series analysis. New Jersey: Princeton University Press; 1994. 800 p.
  13. Box GEP, Jenkins GM, Reinsel GC. Time series analysis: Forecasting and control. Third edition. New Jersey: Prentice Hall; 1994.
Received: 
27.04.2006
Accepted: 
04.07.2006
Published: 
29.12.2006
Short text (in English):
(downloads: 46)