ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Volkov Y. I. Forced oscillation modes in a birhythmic system of two coupled relaxation oscillators near Andronoy - Hopf bifurcation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 6, pp. 60-78. DOI: 10.18500/0869-6632-2004-12-6-60-78

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
534.05179

Forced oscillation modes in a birhythmic system of two coupled relaxation oscillators near Andronoy - Hopf bifurcation

Autors: 
Volkov Yevgeny Izrailevich, Lomonosov Moscow State University
Abstract: 

A system of two identical relaxation oscillators of the FitzZHugh-Nagumo type with the parameters chosen in the vicinity of a bifurcation of limit cycle emergence was examined for the dynamic modes arising in the presence of a weak harmonic signal applied to both elements. Slow variable exchange between them gives rise to three stable limit cycles called in-phase, anti-phase, and extremely asymmetrical, in which only one of the oscillators generates spikes. In this study, we show that slow variable exchange also causes this system to respond to weak harmonic forcing in a manner quite different from what is known in the classical dynamics of forced oscillations. In addition to the expected synchronization tongues generated by interaction of the signal with the in-phase attractor, we observed at least three other consequences of the coexistence of different solutions: (i) there appeared broad bands of synchronization of the signal with the anti-phase solution at high frequencies multiple to the frequency of the anti-phase oscillations, whereas the base synchronization frequency band became much narrower; (ii) signal period ranges were found in which the limit cycles were such that several spikes were produced over the complete period and each oscillator was characterized with the same set of discrete

Key words: 
Acknowledgments: 
The author is grateful to B. Bezruchko, M. Zaks, A. Kuznetsov, A. Polezhaev, A. Pikovsky, and M. Rosenblum for helpful discussions. The work was supported by the Russian Foundation for Basic Research, programm «Проблемы радиофизики» ОФН РАН and program to support leading scientific schools.
Reference: 
  1. Van der Pol. В. Forced oscillations in а circuit with non-linear resistance. (Reception with reactive triode). Phil. Mag. 1926;3:65–80. DOI: 10.1080/14786440108564176.
  2. Arnold VI. Additional Chapters of the Theory of Ordinary Differential Equations. Moskow: Nauka; 1978. 344 p.
  3. Hayashi T. Nonlinear Oscillations in Physical Systems. Moskow: Mir; 1968. 432 p.
  4. Landa PS. Auto Oscillatory Systems with a Finite Number of Degrees of Freedom. Moskow: Nauka; 1980. 360 p.
  5. Pikovsky А, Rosenblum M, Kurths J. Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press. 2001. 433 p. DOI: 10.1017/CBO9780511755743.
  6. Glass L, Mackey MC. From Clocks to Chaos. The Rhythms of Life. Princeton University Press. 1988. 243 p.
  7. Tass PA. Phase Resetting in Medicine and Biology. Stochastic Modelling аnd Data Analysis. Berlin: Springer. 1999. 342 p.
  8. Yuasa H, Ito M. Coordination of many oscillators and generation of locomotory patterns. Germany: Biol. Cybern; 1990;63:177–184. DOI: 10.1007/BF00195856.
  9. Collins JJ, Stewart IN. Coupled nonlinear oscillators аnd the symmetries оf animal gaits. J. Nonlinear Sci. 1993;3:349–392. DOI: 10.1007/BF02429870.
  10. Golubitsky M, Stewart I, Buono PL, Collins JJ. A modular network for legged locomotion. Physica D. 1998;115(1-2):56–72. DOI:10.1016/S0167-2789(97)00222-4.
  11. Takamatsu A, Tanaka R, Yamada H, Nakagaki T, Fujii T, Endo I. Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators оf Physarum Plasmodial Slime mold. Phys. Rev. Lett. 2001;87(7):078102.  DOI: 10.1103/PhysRevLett.87.078102.
  12. Wang XJ, Rinzel J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 1992;4:84–97.
  13. Cymbalyuk GS, Nikolaev EV, Borisyuk RM. In-phase and antiphase self-oscillations in а model of two electrically coupled pacemakers. Biol. Cybern. 1994;71:153–160. DOI: 10.1007/BF00197318.
  14. Abarbanel GD, Rabinovich MI, Selverston, Bazhenov MV, Huerta R, Suschik MM, Rubchinsky LL. Synchronization in neural ensembles. Usp. Phys. Sci. 1996;166(4):363–390.
  15. Rostnov D, Han SK, Kook H. Synchronization оf diffusively coupled oscillators near the homoclinic bifurcation. Phys. Rev. Е. 1999; 60(3):2799–2807. DOI:  10.1103/PhysRevE.60.2799.
  16. Courbage M, Kazantsev VB, Nekorkin VI, Senneret M. Emergence оf chaotic attractor and anti-synchronization for two coupled monostable neurons. Woodbury: Chaos. 2004;14:1148-1156. DOI:10.1063/1.1821691.
  17. Kopell N, Somers D. Anti-phase solutions in relaxation oscillators coupled through excitatory interactions. J. Math. Biol. 1995;33:261–280. DOI: 10.1007/BF00169564.
  18. Ebeling W, Landa PS, Ushakov VG. Self-oscillations in ring Toda chains with negative friction. Phys. Rev. Е. 2001;63(4):046601. DOI:  10.1103/PhysRevE.63.046601.
  19. Ruwisch D, Bode M, Schutz P, Markus M. Parallel analog computation of coupled cell cycles with electrical oscillators. Phys. Lett. A. 1994;186(1-2):137–144.
  20. Brailove AA, Linsay PS. An experimental study of a population of relaxation oscillators with а phase-repelling mean-field coupling. Int. J. Bifurcation Chaos. 1996;6:1211–1253. DOI: 10.1142/S0218127496000692.
  21. Khibnik AI, Braiman Y, Protopopescu V, Kennedy TAB, Wiesenfeld K. Amplitude dropout in coupled lasers. Phys. Rev. А. 2000;62(6):063815. DOI:  10.1103/PhysRevA.62.063815.
  22. Bar-Eli K. Coupling of identical chemical oscillators. J. Phys. Chem. 1990; 94. 2368–2374. DOI: 10.1021/j100369a033.
  23. Yoshimoto M, Yoshikawa K, Mori Y. Coupling among three chemical oscillators: synhronization, phase death, and frustration. Phys. Rev. E. 1993;47(2): 864–874. DOI: 10.1103/PhysRevE.47.864.
  24. Vanag VK, Yang L, Dolnik M, Zhabotinsky AM, Epshtein IR. Oscillatory claster patterns in a homogeneous chemical system with global feedback. Nature. 2000;406(6794):389–391. DOI: 10.1038/35019038.
  25. Rabinovich M, Huerta R, Bazhenov M, Kozlov AK, Abarbanel HDI. Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons. Phys. Rev.E. 1998;58(5):6418–6430. DOI: 10.1103/PhysRevE.58.6418.
  26. Sosnovtseva ОК, Postnov DE, Nekrasov АM, Mosekilde E, Holstein-Rathlou NH. Phase multistability оf self-modulated oscillations. Phys. Rev. Е. 2002;66:036224.
  27. Rand RH, Holmes PJ. Bifurcations of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Non-linear Mech. 1980;15(4-5):387–399. DOI: 10.1016/0020-7462(80)90024-4.
  28. Schreiber I, Holodniok M, Kubicek M, Marek M. Periodic аnd aperiodic regimes in coupled dissipative chemical oscillators. J. Stat. Phis. 1986;43(3-4):314. DOI: 10.1007/BF01020650.
  29. Aronson DG, Doedel EJ, Othmer HG. An analytical and numerical study оf the bifurcations in а system оf linearly-coupled oscillators. Physica D. 1987;25(1-3):20–104. DOI: 10.1016/0167-2789(87)90095-9.
  30. Ashwin Р, King GP, Swift JW. Three identical oscillators with symmetrical coupling. Nonlinearity. 1990;3:585–601. DOI: 10.1088/0951-7715/3/3/003.
  31. Crowley МЕ, Epstein IК. Experimental and theoretical stadies of a coupled chemical oscillator: phase death, multistability, and in-phase and out-of-phase entrainment. J.Phys.Chem. 1989;93(6):2496–2502.
  32. Ruwisch Р, Bode M, Volkov DV, Volkov EI. Collective modes оf the three coupled relaxation oscillators: the influence оf detuning. Int. J. Bifurcation and Chaos. 1999;9:1969. DOI: 10.1142/s0218127499001437.
  33. Ramana RDV, Sen A, Johnston GL. Experimental evidence of time-delayinduced death in coupled limit-cycle oscillators. Phys. Rev. Lett. 2000;85(16):3381. DOI: 10.1103/PhysRevLett.85.3381.
  34. Renversez G. Synchronization in two neurons: Results for a two-component dynamical model with time-delayed inhibition. Physica D. 1998;114(1-2):147–171. DOI: 10.1016/S0167-2789(97)00149-8.
  35. Volkov EI, Stolyarov MN. Birhythmicity in а system of two coupled oscillators. Phys. Lett. А. 1991;159(1-2):61–66. DOI: 10.1016/0375-9601(91)90162-2.
  36. Volkov EI, Stolyarov MN. Temporal variability in а system оf coupled mitotic timers. Biol. Cybern. 1994;71(5):451–459. DOI: 10.1007/BF00198921.
  37. Volkov DV, Stolyarov MN, Volkov EI. Effective numerical method of studying the dynamics of chains of strongly relaxation oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 1996;4(3):77.
  38. Volkov EI, Stolyarov MN. Temporal variability generated by coupling of mitotic timers J. Biol. Systems. 1995;3:63–78.
  39. Anishchenko VS, Neumann AV, Moss F, Szymanskii-Gayer L. Stochastic resonance: noise-induced order. Usp. Phys. Nauk. 1999;169:7–38.
  40. Izhikevich ЕМ. Resonance and selective communication via bursts in neurons having subthreshold oscillations. BioSystems. 2002;67(1-3):95–102. DOI: 10.1016/s0303-2647(02)00067-9.
  41. Medvedev GS, Cisternas JE. Multimodal regimes in a compartmental model of the dopamine neuron. Physica D. 2004;194:333–356.
  42. Somers D, Kopell N. Rapid synchronization through fast threshold modulation. Biol. Cybern. 1993;68:393–407. DOI: 10.1007/BF00198772.
  43. Eckhause W. Relaxation oscillations including а standard case of French ducks. In: Springer Lecture Notes Math. 1983;985:449–494.
  44. Braaksma B, Grasman J. Critical dynamics оf the Bonhoeffer-van der Pol equation and its chaotic response to periodic stimulation. Physica D. 1992;68(2):265–280. DOI: 10.1016/0167-2789(93)90084-E.
  45. Lloyd Р, Lloyd AL, Olsen LF. The cell division cycle: а physiologically plausible dynamic model can exibit chaotic solutions. BioSystems. 1992;27:17–24. DOI: 10.1016/0303-2647(92)90043-x.
  46. Landa PS, Rabinovitch A. Exhibition of intrinsic properties of certain systems in response 10 external disturbances. Phys. Rev. Е. 2000;61(2):1829. DOI: 10.1103/PhysRevE.61.1829.
  47. Sekikawa M, Inaba N, Tsubouchi T. Chaos via duck solution breakdown in a piece wise linear van der Pol oscillator driven by an extremely small periodic perturbation. Physica D. 2004;194(3-4):227–249. DOI:10.1016/S0167-2789(04)00104-6.
  48. Treutlein H, Schulten K. Noise-induced neural impulses. Eur. Biophys. J. 1986;13:355–365. DOI: 10.1007/BF00265671.
  49. Volkov EI, Stolyarov MN, Zaikin А, Kurths J. Coherence resonance аnd polymodality in inhibitory coupled excitable oscillators. Phys. Rev. Е. 2003;67(6):066202. DOI: 10.1103/PhysRevE.67.066202.
  50. Postnov DE, Sosnovtseva OV, Han SK, Kim WS. Noise-induced multimode behavior in excitable systems. Phys. Rev. Е. 2002;66(1):016203. DOI: 10.1103/PhysRevE.66.016203.
  51. Volkov EI, Ullner E, Zaikin AA, Kurths J. Frequency-dependent stochastic resonance in inhibitory coupled excitable systems. Phys. Rev. Е. 2003;68(6):061112. DOI: 10.1103/PhysRevE.68.061112.
  52. Kerner B, Osipov V.  Usp. Phys. Sien. 1990;33:679.
  53. Castets V, Dulos E, Boissonade J, De Kepper P. Experimental evidence оf а sustained standing turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 1990;64(24):2953-2956. DOI: 10.1103/PhysRevLett.64.2953.
  54. Wang XJ, Rinzel J. Alternating аnd synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp. 1992;4(1):84–97. DOI: 10.1162/neco.1992.4.1.84.
  55. McMillen D, Kopell N, Hasty J, Collins JJ. Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. 2002;99(2):679–684.
  56. Kuznetsov A, Kaern M, Kopell N. Synchrony in a population of hysteresis-based generic oscillators. SIAM J. Appl. Math. 2005;65:392–425.
Received: 
29.11.2005
Accepted: 
12.04.2005
Published: 
15.06.2005