ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Komarov M. A., Osipov G. V. Generation of slow rhythms and sequential activity in ensembles of neuron-like oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 5, pp. 17-32. DOI: 10.18500/0869-6632-2010-18-5-17-32

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 162)
Article type: 

Generation of slow rhythms and sequential activity in ensembles of neuron-like oscillators

Komarov Maksim Andreevich, Lobachevsky State University of Nizhny Novgorod
Osipov Grigorij Vladimirovich, Lobachevsky State University of Nizhny Novgorod

Recent experimental and theoretical studies indicate that slow brain rhythms are generated by simple inhibitory neural networks. Sequential switching of tonic spiking activity is a widespread phenomenon underlying such rhythms. In this paper, we analyze a minimal, reciprocally connected circuit of three spiking units in the cases of different excitability classes of models. It is shown that in both types arising of stable heteroclic contour produces sequentail activation and slow rhythm generation in neural microcircuit. Bifurcation of heteroclinic contour arising is investigated. 

  1. Buzsaki G. Rhythms of the Brain. Oxford: Oxford University Press; 2006.
  2. Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI. Dynamical principles in neuroscience. Rev. Mod. Phys. 2006;78(4):1213–1265. DOI: 10.1103/RevModPhys.78.1213.
  3. Hahnloser RH, Kozhevnikov AA, Fee MS. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature. London. 2002;419:65–70. DOI: 10.1038/nature00974.
  4. Mazor O, Laurent G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron. 2005;48(4):661–73. DOI: 10.1016/j.neuron.2005.09.032.
  5. Huxter J, Burgess N, O’Keefe J. Independent rate and temporal coding in hippocampal pyramidal cells. Nature. London. 2003;425:828–832. DOI: 10.1038/nature02058.
  6. Nowotny T, Rabinovich MI. Dynamical origin of independent spiking and bursting activity in neural microcircuits. Phys. Rev. Lett. 2007;98(12):128106. DOI: 10.1103/PhysRevLett.98.128106.
  7. Afraimovich VS, Rabinovich MI, Varona P. Heteroclinic contours in neural ensembles and the winnerless competition principle. Int. J. Bifurcation Chaos. 2004;14:1195-1208. DOI: 10.1142/S0218127404009806.
  8. Afraimovich VS, Zhigulin VP, Rabinovich MI. On the origin of reproducible sequential activity in neural circuits. Chaos. 2004;14(4):1123–1129. DOI: 10.1063/1.1819625.
  9. Rabinovich MI, Huerta R, Varona P, Afraimovich VS. Transient cognitive dynamics, metastability, and decision making. PLOS Comput. Biol. 2008;4(5):e1000072. DOI: 10.1371/journal.pcbi.1000072.
  10. Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HD, Laurent G. Dynamical encoding by networks of competing neuron groups: Winnerless competition. Phys. Rev. Lett. 2001;87(6):068102. DOI: 10.1103/PhysRevLett.87.068102.
  11. Komarov MA, Osipov GV, Suykens JAK. Sequentially activated groups in neural networks. Europhys. Lett. 2009;86(6):60006. DOI: 10.1209/0295-5075/86/60006.
  12. Bonhoeffer KF. Modelle der nervenerregung. Naturwissenschaften. 1953;40:301–311. DOI: 10.1007/BF00632438.
  13. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981;35(1):193–213. DOI: 10.1016/S0006-3495(81)84782-0.
  14. Jones LM, Fontanini A, Sadacca BF, Miller P, Katz DB. Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Natl. Acad. Sci. U.S.A. 2007;104(47):18772–18777. DOI: 10.1073/pnas.0705546104.
  15. Rabinovich M, Huerta R, Laurent G. Transient dynamics for neural processing. Science. 2008;321:48–50. DOI: 10.1126/science.1155564.
Short text (in English):
(downloads: 93)