For citation:
Andreyev Y. V. Global synchronization in lattices of chaotic maps with limited number of connections. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 1, pp. 12-28. DOI: 10.18500/0869-6632-1999-7-1-12-28
Global synchronization in lattices of chaotic maps with limited number of connections
Stability of the global synchronous mode of chaotic map lattices is investigated by means of direct calculation of the stability conditions, and by means of numerical simulation. The lattices with local connections are shown to have a limit value of the Lyapunov exponent of the lattice maps, above which the global synchronous mode loses stability. The synchronous mode in large lattices is found impossible due to the local nature, i.e., «short range» of the connections. We propose some approaches to modification of the dynamic system structure that can provide stability of the synchronous mode, such as tuning the dynamic mode of the lattice maps, extension of the local neighborhood, use of nonlocal static and dynamic connections, and introduction of an external control node (a pacemaker). In the model with the pacemaker, a spatial synchronous lattice mode is revealed, different from the pacemaker mode («generalized» synchronization).
- Kaneko K, editor. Theory and applications оf coupled mар lattices. New York: Wiley; 1993. 192 p.
- Langton С. Studying artificial life with cellular automata. Physica D. 1986;22(1-3):120-149. DOI: 10.1016/0167-2789(86)90237-X.
- Bak Р, Tang C, Wiesenfeld K. Self-organized criticality. Phys. Rev. А. 1988;38(1):364-374. DOI: 10.1103/PhysRevA.38.364.
- Gell-Mann M. What is complexity? Remarks on simplicity and complexity by the Nobel Prize-winning author of The Quark and the Jaguar. Complexity. 1995;1(1):16-19. DOI: 10.1002/cplx.6130010105.
- Gutowitz H. Cellular automata and the sciences of complexity (part I): A review of some outstanding problems in the theory of cellular automata. Complexity. 1996;1(5):16-22. DOI: 10.1002/cplx.6130010505.
- Sinha S. Implications оf varying communication speeds in «globally» coupled maps. Phys. Rev. Е. 1998;57(4):4041-4045. DOI: 10.1103/PhysRevE.57.4041.
- Alexander JC, Yorke JA, You Z, Kan I. Riddled basins. Int. J. Bifurc. Chaos. 1992;2(4):795-813. DOI: 10.1142/S0218127492000446.
- Maistrenko Yu, Kapitaniak T. Different types of chaos synchronization in two coupled piecewise linear maps. Phys. Rev. Е. 1996;54(4):3285-3292. DOI: 10.1103/PhysRevE.54.3285.
- Heagy JF, Carroll TL, Pecora LM. Experimental and numerical evidence for riddled basins in coupled chaotic systems. Phys. Rev. Lett. 1994;73(26):3528-3531. DOI: 10.1103/PhysRevLett.73.3528.
- Heagy JF, Carroll TL, Pecora LM. Desynchronization by periodic orbits. Phys. Rev. E. 1995;52(2):1253-1256. DOI: 10.1103/PhysRevE.52.R1253.
- Kuzmin LV, Panas Al. Synchronization stability оf drive—response systems with dynamical chaos. In: Proc. 5th IEEE Int. Spec. Workshop on NDES. 26—27 June, 1997. Moscow, Russia. 1997. P. 485-490.
- Dmitriev AS, Shirokov ME, Starkov SО. Chaotic synchronization in ensembles оf coupled maps. IEEE Trans. Circuits Syst. I. 1997;44(10):918-926. DOI: 10.1109/81.633881.
- Hasler M, Maistrenko YuL. An introduction to the synchronization of chaotlc systems: Coupled skew tent maps. IEEE Trans. Circuits Syst. I. 1997;44(10):856-866. DOI: 10.1109/81.633874.
- Dmitriev AS, Starkov SO, Shirokov ME. Synchronisation of ensembles of dissipatively related mappings. No. 9(609) IRE RAS Preprint; 1994. 38 p. (in Russian).
- Dmitriev AS, Shirokov ME, Starkov SO. Chaotic synchronization оf ensembles of locally and globally coupled discrete—time dynamical sysiems. Rigorous results and computer simulation. In: Proc. 3rd Int. Spec. Workshop Nonlinear Dynamics Electronic Systems. 28-29 July, 1995. Dublin, Ireland. Dublin: University College Dublin Publishing; 1995.
- Dmitriev AS, Starkov SO, Shirokov ME. Synchronisation of ensembles of related mappings. Izvestiya VUZ. Applied Nonlinear Dynamics. 1996;4(4-5):40. (in Russian).
- Chua LO, Yang L. Cellular neural networks: Theory. IEEE Trans. Circuits Syst. I. 1988;35(10):1257-1272. DOI: 10.1109/31.7600.
- Kaneko K. Spatiotemporal chaos in one— and two—dimensional coupled map lattices. Physica D. 1989;37(1-3):60-82. DOI: 10.1016/0167-2789(89)90117-6.
- Rulkov NF, Sushchik MM, Tsimring LS. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. Е. 1995;51(2):980-994. DOI: 10.1103/PhysRevE.51.980.
- Косаrev L, Parlitz U. Generalized synchronization, predictability, аnd equivalelnce of undirectionally coupled dynamical systems. Phys. Rev. Lett. 1996;76(11):1816-1819. DOI: 10.1103/PhysRevLett.76.1816.
- Stark J. Invariant graphs for forced systems. Physica D. 1997;109(1-2):163-179. DOI: 10.1016/S0167-2789(97)00167-X.
- Hunt BR, Ott E, Yorke А. Differentiable generalized synchronization оf chaos. Phys. Rev. Е. 1996;55(4):4029-4034. DOI: 10.1103/PhysRevE.55.4029.
- 202 reads