ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Lobanov N. D., Matveev O. V., Morozova M. A. Influence of nonlinearity on the Bragg resonances in coupled magnon crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 1, pp. 111-120. DOI: 10.18500/0869-6632-003081, EDN: ULYAJE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Article type: 

Influence of nonlinearity on the Bragg resonances in coupled magnon crystals

Lobanov Nikita Dmitrievich, Saratov State University
Matveev Oleg Valerevich, Saratov State University
Morozova Maria Aleksandrovna, Saratov State University

Purpose. The purpose of this paper is to investigate the effect of nonlinearity on formation mechanism and characteristics of Bragg resonances in vertically coupled magnon crystals with periodic groove system on the surface. In this paper a wave model is constructed, a nonlinear dispersion relation for surface magnetostatic waves in such a structure is obtained and the characteristics of each of the Bragg resonances are numerically studied with increasing input signal power.

Methods. Theoretical methods of investigation of spin-wave excitations in a wide class of structures with ferromagnetic layers have been used. In particular, the following theoretical models have been used: coupled wave method, long-wave approximation.

Results. This paper presents the results of a theoretical investigation of the effect of magnetic nonlinearity on Bragg resonances in a sandwich structure based on magnon crystals with periodic grooves on the surface separated by a dielectric layer. A mechanism for the formation of band gaps at the Bragg resonance frequencies in the presence of media nonlinearity has been revealed. It is shown that with increasing input power the frequency interval between the band gaps decreases. With increasing magnetization difference of magnon crystals, the effect of nonlinear convergence is more pronounced.

Conclusion. The identified features extend the capabilities of sandwich structures based on magnon crystals for frequency selective signal processing by controlling the frequency selectivity, both via static coupling parameters, periodicity and layer magnetisation, and dynamically via the input signal power.

This work was supported by Russian Science Foundation (grant № 23-29-00759)
  1. Nikitov SA, Safin AR, Kalyabin DV, Sadovnikov AV, Beginin EN, Logunov MV, Morozova MA, Odintsov SA, Osokin SA, Sharaevskaya AY, Sharaevsky YP, Kirilyuk AI. Dielectric magnonics: from gigahertz to terahertz. Physics-Uspekhi. 2020;63(10):945–974. DOI: 10.3367/UFNe.2019. 07.038609.
  2. Barman A, Gubbiotti G, Ladak S, Adeyeye AO, Krawczyk M, Grafe J, Adelmann C, Cotofana S, Naeemi A, Vasyuchka VI, Hillebrands B, Nikitov SA, Yu H, Grundler D, Sadovnikov AV, Grachev AA, Sheshukova SE, Duquesne J-Y, Marangolo M, Csaba G, Porod W, Demidov VE, Urazhdin S, Demokritov SO, Albisetti E, Petti D, Bertacco R, Schultheiss H, Kruglyak VV, Poimanov VD, Sahoo S, Sinha J, Yang H, Munzenberg M, Moriyama T, Mizukami S, Landeros P, Gallardo RA, Carlotti G, Kim J-V, Stamps RL, Camley RE, Rana B, Otani Y, Yu W, Yu T, Bauer GEW, Back C, Uhrig GS, Dobrovolskiy OV, Budinska B, Qin H, van Dijken S, Chumak AV, Khitun A, Nikonov DE, Young IA, Zingsem BW, Winklhofer M. The 2021 magnonics roadmap. Journal of Physics: Condensed Matter. 2021;33(41):413001. DOI: 10.1088/1361-648X/abec1a.
  3. Barman A, Sinha J. Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Cham: Springer; 2018. 156 p. DOI: 10.1007/978-3-319-66296-1.
  4. Krawczyk M, Grundler D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. Journal of Physics: Condensed Matter. 2014;26(12):123202. DOI: 10.1088/0953-8984/26/12/123202.
  5. Chumak AV, Serga AA, Hillebrands B. Magnonic crystals for data processing. Journal of Physics D: Applied Physics. 2017;50(24):244001. DOI: 10.1088/1361-6463/aa6a65.
  6. Brillouin L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. 2d edition. Dover Publications; 1953. 255 p.
  7. Wigen PE. Nonlinear Phenomena and Chaos in Magnetic Materials. Singapore: World Scientific; 1994. 260 p. DOI: 10.1142/1686.
  8. L’vov VS. Nonlinear Spin Waves. Moscow: Nauka; 1987. 272 p. (in Russian).
  9. Lukomsky VP. Nonlinear magnetostatic waves in ferromagnetic plates. Ukrainian Physical Journal. 1978;23(1):134 (in Russian).
  10. Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lagel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana SD, Dobrovolskiy OV, Bracher T, Pirro P, Chumak AV. A magnonic directional coupler for integrated magnonic half-adders. Nature Electronics. 2020;3(12):765–774. DOI: 10.1038/s41928-020-00485-6.
  11. Morozova MA, Matveev OV, Romanenko DV, Trukhanov AV, Mednikov AM, Sharaevskii YP, Nikitov SA. Nonlinear spin wave switches in layered structure based on magnonic crystals. Journal of Magnetism and Magnetic Materials. 2020;508:166836. DOI: 10.1016/j.jmmm.2020.166836.
  12. Ustinov AB, Drozdovskii AV, Kalinikos BA. Multifunctional nonlinear magnonic devices for microwave signal processing. Applied Physics Letters. 2010;96(14):142513. DOI: 10.1063/ 1.3386540.
  13. Castera JP, Hartemann P. Adjustable magnetostatic surface-wave multistrip directional coupler. Electronics Letters. 1980;16(5):195–196. DOI: 10.1049/el:19800140.
  14. Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B, Chumak AV. Reconfigurable nanoscale spin-wave directional coupler. Science Advances. 2018;4(1):e1701517. DOI: 10.1126/sciadv.1701517.
  15. Vogt K, Fradin FY, Pearson JE, Sebastian T, Bader SD, Hillebrands B, Hoffmann A, Schultheiss H. Realization of a spin-wave multiplexer. Nature Communications. 2014;5(1):3727. DOI: 10.1038/ ncomms4727.
  16. Klingler S, Pirro P, Bracher T, Leven B, Hillebrands B, Chumak AV. Spin-wave logic devices based on isotropic forward volume magnetostatic waves. Applied Physics Letters. 2015;106(21):212406. DOI: 10.1063/1.4921850.
  17. Sasaki H, Mikoshiba N. Directional coupling of magnetostatic surface waves in a layered structure of YIG films. Journal of Applied Physics. 1981;52(5):3546–3552. DOI: 10.1063/1.329134.
  18. An K, Bhat VS, Mruczkiewicz M, Dubs C, Grundler D. Optimization of spin-wave propagation with enhanced group velocities by exchange-coupled ferrimagnet-ferromagnet bilayers. Physical Review Applied. 2019;11(3):034065. DOI: 10.1103/PhysRevApplied.11.034065.
  19. Morozova MA, Romanenko DV, Matveev OV, Grishin SV, Sharaevskii YP, Nikitov SA. Suppression of periodic spatial power transfer in a layered structure based on ferromagnetic films. Journal of Magnetism and Magnetic Materials. 2018;466:119–124. DOI: 10.1016/j.jmmm.2018.06.077.
  20. Morozova MA, Sharaevskaya AY, Sadovnikov AV, Grishin SV, Romanenko DV, Beginin EN, Sharaevskii YP, Nikitov SA. Band gap formation and control in coupled periodic ferromagnetic structures. Journal of Applied Physics. 2016;120(22):223901. DOI: 10.1063/1.4971410.
  21. Morozova MA, Grishin SV, Sadovnikov AV, Romanenko DV, Sharaevskii YP, Nikitov SA. Tunable bandgaps in layered structure magnonic crystal–ferroelectric. IEEE Transactions on Magnetics. 2015;51(11):2802504. DOI: 10.1109/TMAG.2015.2446763.
  22. Morozova MA, Lobanov ND, Matveev OV, Nikitov SA. Mechanism of band gap formation in the spin-wave spectrum of coupled magnon crystals. JETP Letters. 2022;115(12):742–748. DOI: 10.1134/S0021364022600963.
  23. Louisell WH. Coupled Mode and Parametric Electronics. New York: Wiley; 1960. 268 p.
  24. Vashkovskii AV, Stalmakhov VS, Sharaevskii YP. Magnetostatic Waves in Microwave Electronics. Saratov: Saratov University Publishing; 1993. 312 p. (in Russian).
Available online: