ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kostin V. A., Osipov G. V. Instability of homogeneous state and two-domain spatiotemporal structures in reaction-diffusion systems with global coupling. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, iss. 1, pp. 186-207. DOI: 10.18500/0869-6632-2021-29-1-186-207

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 1144)
Language: 
Russian
Article type: 
Article
UDC: 
530.182

Instability of homogeneous state and two-domain spatiotemporal structures in reaction-diffusion systems with global coupling

Autors: 
Kostin Vasily Aleksandrovich, Institute of Applied Physics of the Russian Academy of Sciences
Osipov Grigorij Vladimirovich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

The purpose of this work was to study the typical instability of a homogeneous state resulting in two-domain spatiotemporal patterns in reaction-diffusion systems with global coupling. Methods. The linear stage of instability was analyzed based on the method of separation of variables for a one-dimensional two-component system of general form on a finite interval with Neumann boundary conditions. The development of instability at the nonlinear stage was simulated numerically using the method of lines for specific systems. Results. It was shown that the introduction of a global coupling can lead to a loss of stability of initially stable homogeneous states. The instability criteria are determined for the two-component systems in general case. A case is singled out when, even in long media, the spatial mode with a wavelength equal to twice the size of the system has the largest growth rate, which can lead to the formation of distinctive two-domain patterns as a result of the instability developing at the nonlinear stage. In this case, the interdomain boundary can both be stationary or oscillate, and the corresponding dynamical regimes can be interpreted as trigger waves with zero or alternating velocity. This interpretation made it possible to analytically estimate the steady-state sizes of domains in the distributed FitzHugh–Nagumo system, as well as to construct simple examples of systems in which the interdomain boundary oscillates harmonically with arbitrary amplitude or chaotically in way similar to the motion of the Rossler system. ¨ Conclusion. The investigated instability of a homogeneous state exists in a wide range of systems and differs from the well-known diffusion-driven instabilities (in particular, the Turing instability), where the spatial scale of growing disturbances in the long-medium limit is determined exclusively by the local properties of the system, but not by its dimensions. 

Acknowledgments: 
Работа поддержана Министерством науки и высшего образования Российской Федерации, проект № 0729-2020-0036 (раздел 1), Российским фондом фундаментальных исследований, грант № 19-52-12053 (раздел 2) и Российским научным фондом, грант № 19-12-00367 (раздел 3).
Reference: 

 

  1. Vanag V.K. Waves and patterns in reaction-diffusion systems. Belousov–Zhabotinsky reaction in water-in-oil microemulsions. Phys.-Usp. 2004;47(9):923. DOI: 10.1070/PU2004v047n09ABEH001742.
  2. Mikhailov A.S., Showalter K. Control of waves, patterns and turbulence in chemical systems. Physics Reports. 2006;425(2–3):79–194. DOI: 10.1016/j.physrep.2005.11.003.
  3. Volpert V., Petrovskii S. Reaction-diffusion waves in biology. Physics of Life Reviews. 2009;6(4): 267–310. DOI: 10.1016/j.plrev.2009.10.002.
  4. Gentili P.L., Micheau J.-C. Light and chemical oscillations: review and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2020;43(2):100321. DOI: 10.1016/j.jphotochemrev.2019.100321.
  5. Trelles J.P. Pattern formation and self-organization in plasmas interacting with surfaces. J. Phys. D: Appl. Phys. 2016;49(39):393002. DOI: 10.1088/0022-3727/49/39/393002.
  6. Ouyang J., Li B., He F., Dai D. Nonlinear phenomena in dielectric barrier discharges: pattern, striation and chaos. Plasma Sci. Technol. 2018;20(10):103002. DOI: 10.1088/2058-6272/aad325.
  7. Purwins H.-G., Bodeker H.U., Amiranashvili S. Dissipative solitons. Advances in Physics. 2010; ¨ 59(5):485–701. DOI: 10.1080/00018732.2010.498228.
  8. Kuznetsov S.P., Mosekilde E., Dewel G., Borckmans P. Absolute and convective instabilities in a one-dimensional Brusselator flow model. J. Chem. Phys. 1997;106(18):7609–7616. DOI: 10.1063/1.473763.
  9. Kuznetsov S.P. Absolute and convective instability and pattern formation in a model of distributed reaction-diffusion system with flow. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(4): 3–19 (in Russian).
  10. Kuptsov P.V., Kuznetsov S.P., Knudsen C. Convective wave front locking for a reaction-diffusion system in a conical flow reactor. Phys. Lett. A. 2002;294(3–4):210–216. DOI: 10.1016/S0375-9601(02)00065-8.
  11. Kuptsov P.V., Kuznetsov S.P., Mosekilde E. Particle in the Brusselator model with flow. Physica D: Nonlinear Phenomena. 2002;163(1):80–88. DOI: 10.1016/S0167-2789(01)00382-7.
  12. Kuptsov P.V., Kuznetsov S.P., Knudsen C., Mosekilde E. Absolute and convective instabilities in the one-dimensional Brusselator model with flow Recent Research Developments in Chemical Physics, Transworld Research Network, Kerala, India. 2003;4(II):633–658.
  13. Mertens F., Imbihl R., Mikhailov A.S. Breakdown of global coupling in oscillatory chemical reactions. J. Chem. Phys. 1993;99(11):8668–8671. DOI: 10.1063/1.465590.
  14. Falcke M., Engel H. Pattern formation during the CO oxidation on Pt(110) surfaces under global coupling. J. Chem. Phys. 1994;101(7):6255–6263. DOI: 10.1063/1.468379.
  15. Falcke M., Engel H., Neufeld M. Cluster formation, standing waves, and stripe patterns in oscillatory active media with local and global coupling. Phys. Rev. E. 1995;52(1):763–771. DOI: 10.1103/physreve.52.763.
  16. Veser G., Mertens F., Mikhailov A.S., Imbihl R. Global coupling in the presence of defects: synchronization in an oscillatory surface reaction. Phys. Rev. Lett. 1993;71(6):935–938. DOI: 10.1103/PhysRevLett.71.935.
  17. Bertram M., Mikhailov A.S. Pattern formation in a surface chemical reaction with global delayed feedback. Phys. Rev. E. 2001;63(6):066102. DOI: 10.1103/PhysRevE.63.066102.
  18. Kim M., Bertram M., Pollmann M., von Oertzen A., Mikhailov A.S., Rotermund H.H., Ertl G. Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt(110). Science. 2001;292(5520):1357–1360. DOI: 10.1126/science.1059478.
  19. Cisternas J., Wehner S. Detailed analysis of transitions in the CO oxidation on palladium(111) under noisy conditions. J. Chem. Phys. 2018;149(4):044706. DOI: 10.1063/1.5040704.
  20. Callegari T., Bernecker B., Boeuf J.P. Pattern formation and dynamics of plasma filaments in dielectric barrier discharges. Plasma Sources Sci. Technol. 2014;23(5):054003. DOI: 10.1088/0963-0252/23/5/054003.
  21. Song Z., Qu Z. Delayed global feedback in the genesis and stability of spatiotemporal excitation patterns in paced biological excitable media. PLOS Computational Biology. 2020;16(10): e1007931. DOI: 10.1371/journal.pcbi.1007931.
  22. Panfilov A.V., Keldermann R.H., Nash M.P. Self-organized pacemakers in a coupled reactiondiffusion-mechanics system. Phys. Rev. Lett. 2005;95(25):258104. DOI: 10.1103/PhysRevLett.95.258104.
  23. Alvarez-Lacalle E., Echebarria B. Global coupling in excitable media provides a simplified description of mechanoelectrical feedback in cardiac tissue. Phys. Rev. E. 2009;79(3):031921. DOI: 10.1103/PhysRevE.79.031921.
  24. Dierckx H., Arens S., Li B.-W., Weise L.D., Panfilov A.V. A theory for spiral wave drift in reaction-diffusion-mechanics systems. New J. Phys. 2015;17(4):043055. DOI: 10.1088/1367-2630/17/4/043055.
  25. Radszuweit M., Alvarez-Lacalle E., Bar M., Echebarria B. Cardiac contraction induces discordant ¨ alternans and localized block. Phys. Rev. E. 2015;91(2):022703. DOI: 10.1103/PhysRevE.91.022703.
  26. Kostin V.A., Osipov G.V. Transient and periodic spatiotemporal structures in a reaction-diffusionmechanics system. Chaos. 2016;26(1):013101. DOI: 10.1063/1.4938736.
  27. Kostin V.A., Osipov G.V. Excitation of spatiotemporal structures in elastic electroactive contractile fibers. Dokl. Math. 2016;93(1):108–111. DOI: 10.1134/S1064562416010324.
  28. Collet A., Bragard J., Dauby P.C. Temperature, geometry, and bifurcations in the numerical modeling of the cardiac mechano-electric feedback. Chaos. 2017;27(9):093924. DOI: 10.1063/1.5000710.
  29. Weise L.D., Panfilov A.V. Mechanism for mechanical wave break in the heart muscle. Phys. Rev. Lett. 2017;119(10):108101. DOI: 10.1103/PhysRevLett.119.108101.
  30. Yapari F., Deshpande D., Belhamadia Y., Dubljevic S. Control of cardiac alternans by mechanical and electrical feedback. Phys. Rev. E. 2014;90(1):012706. DOI: 10.1103/PhysRevE.90.012706.
  31. Nagashima Y., Tsugawa S., Mochizuki A., Sasaki T., Fukuda H., Oda Y. A Rho-based reactiondiffusion system governs cell wall patterning in metaxylem vessels. Scientific Reports. 2018; 8(1):11542. DOI: 10.1038/s41598-018-29543-y.
  32. Tamemoto N., Noguchi H. Pattern formation in reaction-diffusion system on membrane with mechanochemical feedback. Scientific Reports. 2020;10(1):19582. DOI: 10.1038/s41598-020-76695-x.
  33. Banerjee S., Utuje K.J.C., Marchetti M.C. Propagating stress waves during epithelial expansion. Phys. Rev. Lett. 2015;114(22):228101. DOI: 10.1103/PhysRevLett.114.228101.
  34. Furter J., Grinfeld M. Local vs. non-local interactions in population dynamics. J. Math. Biology. 1989;27(1):65–80. DOI: 10.1007/BF00276081.
  35. Britton N.F. Spatial structures and periodic travelling waves in an integro-differential reactiondiffusion population model. SIAM J. Appl. Math. 1990;50(6):1663–1688. DOI: 10.1137/0150099.
  36. Gourley S.A. Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 2000;41(3): 272–284. DOI: 10.1007/s002850000047.
  37. Genieys S., Volpert V., Auger P. Adaptive dynamics: modelling Darwin’s divergence principle. ´ Comptes Rendus Biologies. 2006;329(11):876–879. DOI: 10.1016/j.crvi.2006.08.006.
  38. Gorban A.N. Selection theorem for systems with inheritance. Math. Model. Nat. Phenom. 2007; 2(4):1–45. DOI: 10.1051/mmnp:2008024.
  39. Berr´ıos-Caro E., Clerc M.G., Escaff D., Sandivari C., Tlidi M. On the repulsive interaction between localised vegetation patches in scarce environments. Scientific Reports. 2020;10(1):5740. DOI: 10.1038/s41598-020-62677-6.
  40. Vanag V.K., Yang L., Dolnik M., Zhabotinsky A.M., Epstein I.R. Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature. 2000;406(6794):389–391. DOI: 10.1038/35019038.
  41. Yang L., Dolnik M., Zhabotinsky A.M., Epstein I.R. Oscillatory clusters in a model of the photosensitive Belousov–Zhabotinsky reaction system with global feedback. Phys. Rev. E. 2000; 62(5):6414–6420. DOI: 10.1103/PhysRevE.62.6414.
  42. Zykov V.S., Bordiougov G., Brandtstadter H., Gerdes I., Engel H. Global control of spiral wave ¨ dynamics in an excitable domain of circular and elliptical shape. Phys. Rev. Lett. 2004;92(1): 018304. DOI: 10.1103/PhysRevLett.92.018304.
  43. Vanag V.K., Epstein I.R. Localized patterns in reaction-diffusion systems. Chaos. 2007;17(3): 037110. DOI: 10.1063/1.2752494.
  44. Vanag V.K., Epstein I.R. Design and control of patterns in reaction-diffusion systems. Chaos. 2008;18(2):026107. DOI: 10.1063/1.2900555.
  45. Krischer K., Mikhailov A.S. Bifurcation to traveling spots in reaction-diffusion Systems. Phys. Rev. Lett. 1994;73(23):3165–3168. DOI: 10.1103/PhysRevLett.73.3165.
  46. Battogtokh D., Mikhailov A.S. Controlling turbulence in the complex Ginzburg–Landau equation. Physica D: Nonlinear Phenomena. 1996;90(1):84–95. DOI: 10.1016/0167-2789(95)00232-4.
  47. Kawamura Y., Kuramoto Y. Onset of collective oscillation in chemical turbulence under global feedback. Phys. Rev. E. 2004;69(1):016202. DOI: 10.1103/PhysRevE.69.016202.
  48. Zykov V.S., Mikhailov A.S., Muller S.C. Controlling spiral waves in confined geometries by ¨ global feedback. Phys. Rev. Lett. 1997;78(17):3398–3401. DOI: 10.1103/PhysRevLett.78.3398.
  49. Zykov V., Engel H. Dynamics of spiral waves under global feedback in excitable domains of different shapes. Phys. Rev. E. 2004;70(1):016201. DOI: 10.1103/PhysRevE.70.016201.
  50. Guo S., Dai Q., Cheng H., Li H., Xie F., Yang J. Spiral wave chimera in two-dimensional nonlocally coupled Fitzhugh–Nagumo systems. Chaos, Solitons & Fractals. 2018;114(9): 394–399. DOI: 10.1016/j.chaos.2018.07.029.
  51. Turing A.M. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1952;237(641):37–72. DOI: 10.1098/rstb.1952.0012.
  52. Cross M.C., Hohenberg P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993;65(3): 851–1112. DOI: 10.1103/RevModPhys.65.851.
  53. Polezhaev A.A., Borina M.Y. Spatial-temporal patterns in active medium caused by diffusion instability. Izvestiya VUZ. Applied Nonlinear Dynamics. 2014;22(2):116–129. DOI: 10.18500/0869-6632-2014-22-2-116-129 (in Russian).
  54. Vasil’ev V.A., Romanovski˘ı Y.M., Yakhno V.G. Autowave processes in distributed kinetic systems. Sov. Phys. Usp. 1979;22(8):615–639. DOI: 10.1070/PU1979v022n08ABEH005591.
  55. Rosen G. On the fisher and the cubic-polynomial equations for the propagation of species properties. Bulletin of Mathematical Biology. 1980;42(1):95–106. DOI: 10.1016/S0092-8240(80)80079-6.
  56. Rossler O.E. An equation for continuous chaos. Phys. Lett. A. 1976;57(5):397–398. ¨ DOI: 10.1016/0375-9601(76)90101-8.
Received: 
08.12.2020
Accepted: 
10.01.2021
Published: 
01.02.2021