ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Nazhestkin I. A., Svarnik O. E. Integrated information and its application for analysis of brain neuron activity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 2, pp. 180-201. DOI: 10.18500/0869-6632-003033, EDN: JSTBXP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Article type: 

Integrated information and its application for analysis of brain neuron activity

Nazhestkin Ivan Andreevich, Russian quantum center
Svarnik Olga Evgenevna, Institute of Psychology of RAS

Purpose of this review is to consider the possibility to apply the integrated information theory to investigate the brain neural activity. Earlier was shown that the integrated information amount Ф quantifies a degree of a dynamic complexity of a system and able to predict a level of its success defined by classic observable benchmarks. For this reason, a question arises about the application of the integrated information theory to analyse changes in brain spiking activity due the acquisition of new experience.

Conclusion. The bases of the integrated information theory and its possible application in neurobiology to investigate the process of new experience acquisition were reviewed. It was shown that the amount of integrated information Ф is a metric which is able to quantify the dynamic complexity of brain neural networks increasing when the new experience is acquired. Methods, enabling the practical calculation of Ф for spiking data, were proposed.

This work was supported by Russian Foundation for Basic Research, grant No. 20-013-00851
  1. Tononi G. An information integration theory of consciousness. BMC Neuroscience. 2004;5:42. DOI: 10.1186/1471-2202-5-42.
  2. Tononi G. Consciousness as integrated information: a provisional manifesto. The Biological Bulletin. 2008;215(3):216–242. DOI: 10.2307/25470707.
  3. Balduzzi D, Tononi G. Integrated information in discrete dynamical systems: motivation and theoretical framework. PLoS Comput. Biol. 2008;4(6):e1000091.DOI: 10.1371/journal.pcbi. 1000091.
  4. Oizumi M, Albantakis L, Tononi G. From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLoS Comput. Biol. 2014;10(5):e1003588. DOI: 10.1371/ journal.pcbi.1003588.
  5. Tononi G, Koch C. Consciousness: here, there and everywhere? Phil. Trans. R. Soc. B. 2015; 370(1668):20140167. DOI: 10.1098/rstb.2014.0167.
  6. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005;309(5744):2228–2232. DOI: 10.1126/science.1117256.
  7. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876– 880. DOI: 10.1126/science.1149213.
  8. Gosseries O, Di H, Laureys S, Boly M. Measuring consciousness in severely damaged brains. Annual Review of Neuroscience. 2014;37:457–478. DOI: 10.1146/annurev-neuro-062012-170339.
  9. Casali AG, Olivia Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno MA, Laureys S, Tononi G, Massimini M. A theoretically based index of consciousness independent of sensory processing and behavior. Science Translational Medicine. 2013;5(198): 198ra105. DOI: 10.1126/scitranslmed.3006294.
  10. King JR, Sitt JD, Faugeras F, Rohaut B, Karoui IE, Cohen L, Naccache L, Dehaene S. Information sharing in the brain indexes consciousness in noncommunicative patients. Current Biology. 2013;23(19):1914–1919. DOI: 10.1016/j.cub.2013.07.075.
  11. Searle JR. Can information theory explain consciousness? [Electronic resource] The New York Review of Books. 10 January 2013. Available from:
  12. Barrett AB, Mediano PAM. The Phi measure of integrated information is not well-defined for general physical systems. Journal of Consciousness Studies. 2019;26(1–2):11–20.
  13. Edlund JA, Chaumont N, Hintze A, Koch C, Tononi G, Adami C. Integrated information increases with fitness in the evolution of animats. PLoS Comput. Biol. 2011;7(10):e1002236. DOI: 10.1371/journal.pcbi.1002236.
  14. Engel D, Malone TW. Integrated information as a metric for group interaction. PLoS ONE. 2018;13(10):e0205335. DOI: 10.1371/journal.pone.0205335.
  15. Albantakis L, Tononi G. The intrinsic cause-effect power of discrete dynamical systems–from elementary cellular automata to adapting animats. Entropy. 2015;17(8):5472–5502. DOI: 10.3390/ e17085472.
  16. Niizato T, Sakamoto K, Mototake YI, Murakami H, Tomaru T, Hoshika T, Fukushima T. Finding continuity and discontinuity in fish schools via integrated information theory. PLoS ONE. 2020;15(2):e0229573. DOI: 10.1371/journal.pone.0229573.
  17. Fujii K, Kanazawa H, Kuniyoshi Y. Spike timing dependent plasticity enhances integrated information at the EEG level: A large-scale brain simulation experiment. In: 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). 19-22 August 2019, Oslo, Norway. New York: IEEE; 2019. P. 137–142. DOI: 10.1109/DEVLRN. 2019.8850724.
  18. Niessing J, Friedrich RW. Olfactory pattern classification by discrete neuronal network states. Nature. 2010;465(7294):47–52. DOI: 10.1038/nature08961.
  19. Mazzucato L, Fontanini A, La Camera G. Dynamics of multistable states during ongoing and evoked cortical activity. Journal of Neuroscience. 2015;35(21):8214–8231. DOI: 10.1523/ JNEUROSCI.4819-14.2015.
  20. Isler JR, Stark RI, Grieve PG, Welch MG, Myers MM. Integrated information in the EEG of preterm infants increases with family nurture intervention, age, and conscious state. PLoS ONE. 2018;13(10):e0206237. DOI: 10.1371/journal.pone.0206237.
  21. Nazhestkin I, Svarnik O. Different approximation methods for calculation of integrated information coefficient in the brain during instrumental learning. Brain Sciences. 2022;12(5):596. DOI: 10.3390/ brainsci12050596.
  22. Nazhestkin IA, Svarnik OE. Integrated information coefficient estimated from neuronal activity in hippocampus-amygdala complex of rats as a measure of learning success. Journal of Integrative Neuroscience. 2022;21(5):128. DOI: 10.31083/j.jin2105128.
  23. Sporns O. Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology. 2013;23(2):162–171. DOI: 10.1016/j.conb.2012.11.015.
  24. Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth; 1909. 324 s. (in German).
  25. Vogt C, Vogt O. Allgemeine ergebnisse unserer hirnforschung. Bd. 25. JA Barth; 1919. 190 s. (in German).
  26. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends in Cognitive Sciences. 2004;8(9):418–425. DOI: 10.1016/j.tics. 2004.07.008.
  27. Hilgetag CC, Burns GAPS, O Neill MA, Scannell JW, Young MP. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Phil. Trans. R. Soc. Lond. B. 2000;355(1393):91–110. DOI: 10.1098/rstb.2000.0551.
  28. Sporns O, Zwi JD. The small world of the cerebral cortex. Neuroinformatics. 2004;2(2):145–162. DOI: 10.1385/NI:2:2:145.
  29. Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–512. DOI: 10.1126/science.286.5439.509.
  30. Bassett DS, Bullmore ED. Small-world brain networks. The Neuroscientist. 2006;12(6):512–523. DOI: 10.1177/1073858406293182.
  31. Muldoon SF, Bridgeford EW, Bassett DS. Small-world propensity and weighted brain networks. Scientific Reports. 2016;6(1):22057. DOI: 10.1038/srep22057.
  32. Bassett DS, Bullmore ET. Small-world brain networks revisited. The Neuroscientist. 2017;23(5): 499–516. DOI: 10.1177/1073858416667720.
  33. Liao X, Vasilakos AV, He Y. Small-world human brain networks: Perspectives and challenges. Neuroscience and Biobehavioral Reviews. 2017;77:286–300. DOI: 10.1016/j.neubiorev.2017.03.018.
  34. Milgram S. The small-world problem. Psychology Today. 1967;1(1):61–67.
  35. Watts DJ, Strogatz SH. Collective dynamics of "small-world" networks. Nature. 1998;393(6684): 440–442. DOI: 10.1038/30918.
  36. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001;87(19): 198701. DOI: 10.1103/PhysRevLett.87.198701.
  37. Latora V, Marchiori M. Economic small-world behavior in weighted networks. The European Physical Journal B - Condensed Matter and Complex Systems. 2003;32(2):249–263. DOI: 10.1140/ epjb/e2003-00095-5.
  38. Simard D, Nadeau L, Kroger H. Fastest learning in small-world neural networks. Physics Letters A. 2005;336(1):8–15. DOI: 10.1016/j.physleta.2004.12.078.
  39. Lynn CW, Bassett DS. The physics of brain network structure, function and control. Nature Reviews Physics. 2019;1(5):318–332. DOI: 10.1038/s42254-019-0040-8.
  40. Anokhin KV. The cognitome: Seeking the fundamental neuroscience of a theory of consciousness. Neuroscience and Behavioral Physiology. 2021;51(7):915–937.DOI: 10.1007/s11055-021-01149-4.
  41. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51(2):980–994. DOI: 10.1103/ PhysRevE.51.980.
  42. Aertsen AM, Gerstein GL, Habib MK, Palm G. Dynamics of neuronal firing correlation: modulation of "effective connectivity". Journal of Neurophysiology. 1989;61(5):900–917. DOI: 10.1152/jn.1989.61.5.900.
  43. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS. The synchronization of chaotic systems. Physics Reports. 2002;366(1–2):1–101. DOI: 10.1016/S0370-1573(02)00137-0.
  44. Rosenblum M, Pikovsky A. Synchronization: From pendulum clocks to chaotic lasers and chemical oscillators. Contemporary Physics. 2003;44(5):401–416. DOI: 10.1080/00107510310001603129.
  45. Malliaros FD, Vazirgiannis M. Clustering and community detection in directed networks: A survey. Physics Reports. 2013;533(4):95–142. DOI: 10.1016/j.physrep.2013.08.002.
  46. Garcia JO, Ashourvan A, Muldoon S, Vettel JM, Bassett DS. Applications of community detection techniques to brain graphs: Algorithmic considerations and implications for neural function. Proceedings of the IEEE. 2018;106(5):846–867. DOI: 10.1109/JPROC.2017.2786710.
  47. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: A review on restingstate fMRI functional connectivity. European Neuropsychopharmacology. 2010;20(8):519–534. DOI: 10.1016/j.euroneuro.2010.03.008.
  48. Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G, Chen H. Small-world directed networks in the human brain: Multivariate Granger causality analysis of resting-state fMRI. NeuroImage. 2011;54(4):2683–2694. DOI: 10.1016/j.neuroimage.2010.11.007.
  49. Stam CJ, van Straaten ECW. The organization of physiological brain networks. Clinical Neurophysiology. 2012;123(6):1067–1087. DOI: 10.1016/j.clinph.2012.01.011.
  50. Kahnt T, Chang LJ, Park SQ, Heinzle J, Haynes JD. Connectivity-based parcellation of the human orbitofrontal cortex. Journal of Neuroscience. 2012;32(18):6240–6250. DOI: 10.1523/JNEUROSCI. 0257-12.2012.
  51. Yu C, Zhou Y, Liu Y, Jiang T, Dong H, Zhang Y, Walter M. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuroImage. 2011;54(4):2571–2581. DOI: 10.1016/j.neuroimage.2010.11.018.
  52. Kashtan N, Alon U. Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. U.S.A. 2005;102(39):13773–13778. DOI: 10.1073/pnas.0503610102.
  53. Lipson H, Pollack JB, Suh NP. On the origin of modular variation. Evolution. 2002;56(8):1549– 1556. DOI: 10.1111/j.0014-3820.2002.tb01466.x.
  54. Rota GC. The number of partitions of a set. The American Mathematical Monthly. 1964;71(5):498– 504. DOI: 10.1080/00029890.1964.11992270.
  55. Berend D, Tassa T. Improved bounds on Bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics. 2010;30(2):185–205.
  56. Graham RL, Knuth DE, Patashnik O. Concrete Mathematics: A Foundation for Computer Science. Reading, MA, USA: Addison–Wesley; 1994. 657 p.
  57. Toker D, Sommer FT. Information integration in large brain networks. PLoS Comput. Biol. 2019;15(2):e1006807. DOI: 10.1371/journal.pcbi.1006807.
  58. Mediano PAM, Seth AK, Barrett AB. Measuring integrated information: Comparison of candidate measures in theory and simulation. Entropy. 2019;21(1):17. DOI: 10.3390/e21010017.
  59. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment. 2008;2008(10):P10008. DOI: 10.1088/1742-5468/2008/10/P10008.
  60. Ng A, Jordan M, Weiss Y. On Spectral Clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems 14. NIPS; 2001.
  61. Faskowitz J, Yan X, Zuo XN, Sporns O. Weighted stochastic block models of the human connectome across the life span. Scientific Reports. 2018;8(1):12997. DOI: 10.1038/s41598-018-31202-1.
  62. Barrett AB, Seth AK. Practical measures of integrated information for time-series data. PLoS Comput. Biol. 2011;7(1):e1001052. DOI: 10.1371/journal.pcbi.1001052.
  63. Tononi G. Integrated information theory of consciousness: an updated account. Archives Italiennes de Biologie. 2012;150(2–3):56–90. DOI: 10.4449/aib.v149i5.1388.
  64. Griffith V. A principled infotheoretic phi-like measure. arXiv:1401.0978. arXiv Preprint; 2014. 18 p. DOI: 10.48550/arXiv.1401.0978.
  65. Oizumi M, Tsuchiya N, Amari S. Unified framework for information integration based on information geometry. Proc. Natl. Acad. Sci. U.S.A. 2016;113(51):14817–14822. DOI: 10.1073/ pnas.1603583113.
  66. Oizumi M, Amari S, Yanagawa T, Fujii N, Tsuchiya N. Measuring integrated information from the decoding perspective. PLoS Comput. Biol. 2016;12(1):e1004654. DOI: 10.1371/journal.pcbi. 1004654. 
  67. VanRullen R. Perceptual cycles. Trends in Cognitive Sciences. 2016;20(10):723–735. DOI: 10.1016/ j.tics.2016.07.006.
  68. Fiebelkorn IC, Pinsk MA, Kastner S. A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron. 2018;99(4):842–853. DOI: 10.1016/j.neuron. 2018.07.038.
  69. Helfrich RF, Fiebelkorn IC, Szczepanski SM, Lin JJ, Parvizi J, Knight RT, Kastner S. Neural mechanisms of sustained attention are rhythmic. Neuron. 2018;99(4):854–865. DOI: 10.1016/ j.neuron.2018.07.032.
Available online: