ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ekomasov E. G., Kudryavtsev R. V., Samsonov K. Y., Nazarov V. N., Kabanov D. К. Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 6, pp. 693-709. DOI: 10.18500/0869-6632-003069, EDN: GLJOXX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Language: 
Russian
Article type: 
Article
UDC: 
517.957, 537.611, 51-73
EDN: 

Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities

Autors: 
Abstract: 

Purpose of this work is to use analytical and numerical methods to consider the problem of the structure and dynamics of the kinks in the sine-Gordon model with “impurities” (or spatial inhomogeneity of the periodic potential).

Methods. Using the method of collective variables for the case of three identical point impurities located at the same distance from each other, a system of differential equations is obtained.

Resulting system of equations makes it possible to describe the dynamics of the kink taking into account the excitation of localized waves on impurities. To analyze the dynamics of the kink in the case of extended impurities, a numerical finite difference method with an explicit integration scheme was applied. Frequency analysis of kink oscillations and localized waves calculated numerically was performed using a discrete Fourier transform.

Results. For the kink dynamics, taking into account the excitation of oscillations in modes, a system of equations for the coordinate of the kink center and the amplitudes of waves localized on impurities is obtained and investigated. Significant differences are observed in the dynamics of the kink when interacting with a repulsive and attractive impurity. The dynamics of the kink in a model with three identical extended impurities, taking into account possible resonant effects, was solved numerically. It is established that the found scenarios of kink dynamics for an extended rectangular impurity are qualitatively similar to the scenarios obtained for a point impurity described using a delta function. All possible scenarios of kink dynamics were determined and described taking into account resonant effects.

Conclusion. The analysis of the influence of system parameters and initial conditions on possible scenarios of kink dynamics is carried out. Critical and resonant kink velocities are found as functions of the impurity parameters.

Acknowledgments: 
This work was supported by Russian Foundation for Basic Research, grant No. 20-31-90048.
Reference: 
  1. Belova TI, Kudryavtsev AE. Solitons and their interactions in classical field theory. Phys. Usp. 1997;40(4):359–386. DOI: 10.1070/PU1997v040n04ABEH000227.
  2. Cuevas-Maraver J, Kevrekidis PG, Williams F, editors. The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Cham: Springer; 2014. 263 p. DOI: 10.1007/978-3-319-06722-3.
  3. Braun OM, Kivshar YS. The Frenkel-Kontorova Model: Concepts, Methods, and Applications. Berlin, Heidelberg: Springer; 2004. 472 p. DOI: 10.1007/978-3-662-10331-9.
  4. Chevizovich D, Michieletto D, Mvogo A, Zakiryanov F, Zdravkovic S. A review on nonlinear DNA physics. R. Soc. Open Sci. 2020;7(11):200774. DOI: 10.1098/rsos.200774.
  5. Starodub IO, Zolotaryuk Y. Fluxon interaction with the finite-size dipole impurity. Phys. Lett. A. 2019;383(13):1419–1426. DOI: 10.1016/j.physleta.2019.01.051.
  6. Kryuchkov SV, Kukhar EI. Nonlinear electromagnetic waves in semi-Dirac nanostructures with superlattice. Eur. Phys. J. B. 2020;93(4):62. DOI: 10.1140/epjb/e2020-100575-4.
  7. Kiselev VV, Raskovalov AA, Batalov SV. Nonlinear interaction of domain walls and breathers with a spin-wave field. Chaos, Solitons & Fractals. 2019;127:217–225. DOI: 10.1016/j.chaos. 2019.06.013.
  8. Ekomasov EG, Nazarov VN, Gumerov AM, Samsonov KY, Murtazin RR. External magnetic field control of the magnetic breather parameters in a three-layer ferromagnetic structure. Letters on Materials. 2020;10(2):141–146 (in Russian). DOI: 10.22226/2410-3535-2020-2-141-146.
  9. Delev VA, Nazarov VN, Scaldin OA, Batyrshin ES, Ekomasov EG. Complex dynamics of the cascade of kink–antikink interactions in a linear defect of the electroconvective structure of a nematic liquid qrystal. JETP Letters. 2019;110(9):607–612. DOI: 10.1134/S0021364019210069.
  10. Kalbermann G. The sine-Gordon wobble. J. Phys. A: Math. Gen. 2004;37(48):11603–11612. DOI: 10.1088/0305-4470/37/48/006.
  11. Ferreira LA, Piette B, Zakrzewski WJ. Wobbles and other kink-breather solutions of the sine Gordon model. Phys. Rev. E. 2008;77(3):036613. DOI: 10.1103/PhysRevE.77.036613.
  12. Dorey P, Gorina A, Perapechka I, Romanczukiewicz T, Shnir Y. Resonance structures in kink-antikink collisions in a deformed sine-Gordon model. Journal of High Energy Physics. 2021;2021(9):145. DOI: 10.1007/JHEP09(2021)145.
  13. Fabian AL, Kohl R, Biswas A. Perturbation of topological solitons due to sine-Gordon equation and its type. Communications in Nonlinear Science and Numerical Simulation. 2009;14(4): 1227–1244. DOI: 10.1016/j.cnsns.2008.01.013.
  14. Saadatmand D, Dmitriev SV, Borisov DI, Kevrekidis PG. Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect. Phys. Rev. E. 2014;90(5):052902. DOI: 10.1103/ PhysRevE.90.052902.
  15. Kivshar YS, Pelinovsky DE, Cretegny T, Peyrard M. Internal modes of solitary waves. Phys. Rev. Lett. 1998;80(23):5032–5035. DOI: 10.1103/PhysRevLett.80.5032.
  16. Gonzalez JA, Bellorin A, Guerrero LE. Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations. Phys. Rev. E. 2002;65(6):065601. DOI: 10.1103/PhysRevE.65.065601.
  17. Gonzalez JA, Bellorin A, Garcia-Nustes MA, Guerrero LE, Jimenez S, Vazquez L. Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations. Phys. Lett. A. 2017;381(24):1995–1998. DOI: 10.1016/j.physleta.2017.03.042.
  18. Gomide OML, Guardia M, Seara TM. Critical velocity in kink-defect interaction models: Rigorous results. Journal of Differential Equations. 2020;269(4):3282–3346. DOI: 10.1016/j.jde.2020.02.030.
  19. Javidan K. Analytical formulation for soliton-potential dynamics. Phys. Rev. E. 2008;78(4):046607. DOI: 10.1103/PhysRevE.78.046607.
  20. Piette B, Zakrzewski WJ. Scattering of sine-Gordon kinks on potential wells. J. Phys. A: Math. Theor. 2007;40(22):5995–6010. DOI: 10.1088/1751-8113/40/22/016.
  21. Al-Alawi JH, Zakrzewski WJ. Scattering of topological solitons on barriers and holes of deformed Sine–Gordon models. J. Phys. A: Math. Theor. 2008;41(31):315206. DOI: 10.1088/1751- 8113/41/31/315206.
  22. Baron HE, Zakrzewski WJ. Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models. Journal of High Energy Physics. 2016;2016(6):185. DOI: 10.1007/JHEP06(2016)185.
  23. Gumerov AM, Ekomasov EG, Murtazin RR, Nazarov VN. Transformation of sine-Gordon solitons in models with variable coefficients and damping. Computational Mathematics and Mathematical Physics. 2015;55(4):628–637. DOI: 10.1134/S096554251504003X.
  24. Goodman RH, Haberman R. Interaction of sine-Gordon kinks with defects: the two-bounce resonance. Physica D: Nonlinear Phenomena. 2004;195(3–4):303–323. DOI: 10.1016/j.physd. 2004.04.002.
  25. Gumerov AM, Ekomasov EG, Zakir’yanov FK, Kudryavtsev RV. Structure and properties of four kink multisolitons of the sine-Gordon equation. Computational Mathematics and Mathematical Physics. 2014;54(3):491–504. DOI: 10.1134/S0965542514030075.
  26. Ekomasov EG, Gumerov AM, Murtazin RR. Interaction of sine-Gordon solitons in the model with attracting impurities. Mathematical Methods in the Applied Sciences. 2016;40(17):6178–6186. DOI: 10.1002/mma.3908.
  27. Ekomasov EG, Gumerov AM, Kudryavtsev RV. On the possibility of the observation of the resonance interaction between kinks of the sine-Gordon equation and localized waves in real physical systems. JETP Letters. 2015;101(12):835–839. DOI: 10.1134/S0021364015120061.
  28. Ekomasov EG, Gumerov AM, Kudryavtsev RV. Resonance dynamics of kinks in the sine Gordon model with impurity, external force and damping. Journal of Computational and Applied Mathematics. 2017;312:198–208. DOI: 10.1016/j.cam.2016.04.013.
  29. Ekomasov EG, Gumerov AM, Kudryavtsev RV, Dmitriev SV, Nazarov VN. Multisoliton dynamics in the sine-Gordon model with two point impurities. Brazilian Journal of Physics. 2018;48(6): 576–584. DOI: 10.1007/s13538-018-0606-4.
  30. Gumerov AM, Ekomasov EG, Kudryavtsev RV, Fakhretdinov MI. Excitation of large-amplitude localized nonlinear waves by the interaction of kinks of the sine-Gordon equation with attracting impurity. Russian Journal of Nonlinear Dynamics. 2019;15(1):21–34. DOI: 10.20537/nd190103.
  31. Ekomasov EG, Murtazin RR, Bogomazova OB, Gumerov AM. One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange. J. Magn. Magn. Mater. 2013;339:133–137. DOI: 10.1016/j.jmmm.2013.02.042.
  32. Ekomasov EG, Murtazin RR, Nazarov VN. Excitation of magnetic inhomogeneities in three-layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange. J. Magn. Magn. Mater. 2015;385:217–221. DOI: 10.1016/j.jmmm.2015.03.019.
  33. Gumerov AM, Ekomasov EG, Kudryavtsev RV. One-dimensional dynamics of magnetic inhomoge neities in a three- and five-layer ferromagnetic structure with different values of the magnetic parameters. J. Phys.: Conf. Ser. 2019;1389:012004. DOI: 10.1088/1742-6596/1389/1/012004.
  34. Ekomasov EG, Samsonov KY, Gumerov AM, Kudryavtsev RV. Nonlinear waves of the sine Gordon equation in the model with three attracting impurities. Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(6):749–765. DOI: 10.18500/0869-6632-003011.
  35. Magnus K. Schwingungen: Eine Einfuhrung in die theoretische Behandlung von Schwingungsprob-lemen. 4 Auflage. Wiesbaden: Vieweg+Teubner Verlag; 1961. 252 s. (in German). DOI: 10.1007/ 978-3-663-10702-6.
  36. Faleychik BV. One-Step Methods for the Numerical Solution of the Cauchy Problem. Minsk: Belarusian State University; 2010. 42 p. (in Russian).
Received: 
15.05.2023
Accepted: 
09.07.2023
Available online: 
17.11.2023
Published: 
30.11.2023